Dynamic changes in terrestrial net primary production and their effects on evapotranspiration

Author:

Li Zhi,Chen YaningORCID,Wang Yang,Fang GonghuanORCID

Abstract

Abstract. The dramatic increase of global temperature since the year 2000 has a considerable impact on the global water cycle and vegetation dynamics. Little has been done about recent feedback of vegetation to climate in different parts of the world, and land evapotranspiration (ET) is the means of this feedback. Here we used the global 1 km MODIS net primary production (NPP) and ET data sets (2000–2014) to investigate their temporospatial changes under the context of global warming. The results showed that global NPP slightly increased in 2000–2014 at a rate of 0.06 PgC yr−2. More than 64 % of vegetated land in the Northern Hemisphere (NH) showed increased NPP (at a rate of 0.13 PgC yr−2), while 60.3 % of vegetated land in the Southern Hemisphere (SH) showed a decreasing trend (at a rate of −0.18 PgC yr−2). Vegetation greening and climate change promote rises of global ET. Specially, the increased rate of land ET in the NH (0.61 mm yr−2) is faster than that in the SH (0.41 mm yr−2). Over the same period, global warming and vegetation greening accelerate evaporation in soil moisture, thus reducing the amount of soil water storage. Continuation of these trends will likely exacerbate regional drought-induced disturbances and point to an increased risk of ecological drought, especially during regional dry climate phases.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3