The snowdrift effect on snow deposition: insights from a comparison of a snow pit profile and meteorological observations

Author:

Ding M.,Xiao C.,Zhang R.,Qin D.,Jin B.,Sun B.,Bian L.,Ming J.,Li C.,Xie A.,Yang W.,Ma Y.

Abstract

Abstract. A high-frequency and precise ultrasonic sounder was used to record precipitated/deposited snow and drift events over a 3 yr period (17 January 2005 to 4 January 2008) at the Eagle automatic weather station (AWS) site. Through a comparison of the meteorological data with snow pit chemical/isotopic dating results, the snowdrift process effect during snow accumulation was assessed. We believe that ice/firn cores are the most important proxies of climate and the environment because of their high resolution and their preservation of historical greenhouse gas levels, although their limitations and measurement uncertainties must be taken into account, due to the event-driven snow dominates the snow deposition. This study found a difference between two dating results of up to 12 months for a ~ 95 cm snow pit, where the annual snow accumulation rate is 30.3 cm. A weakness is also indicated when simulating the surface mass balance in Antarctica.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3