A comparative study of changes in the Lambert Glacier/Amery Ice Shelf system, East Antarctica, during 2004–2008 using gravity and surface elevation observations

Author:

XIE HUAN,LI RONGXING,TONG XIAOHUA,JU XIAOLEI,LIU JUN,SHEN YUNZHONG,CHEN LEI,LIU SHIJIE,SUN BO,CUI XIANGBIN,TIAN YIXIANG,YE WENKAI

Abstract

ABSTRACTWe present results of a regional comparative study of surface mass changes from 2004 to 2008 based on Gravity Recovery and Climate Experiment (GRACE), The Ice, Cloud and Land Elevation Satellite (ICESat) and CHINARE observations over the Lambert Glacier/Amery Ice Shelf system (LAS). Estimation of the ICESat mass change rates benefitted from the density measurements along the CHINARE traverse and a spatial density adjustment method for reducing the effect of spatial density variations. In the high-elevation inland region, a positive trend was estimated from both ICESat and GRACE data, which is in line with the CHINARE accumulation measurements. In the coastal region, there were areas with high level accumulations in both ICESat and GRACE trend maps. In many high flow-speed glacier areas, negative mass change rates may be caused by dynamic ice flow discharges that have surpassed the snow accumulation. Overall, the mass change rate estimate in the LAS of 2004–2008 from the GRACE, ICESat and CHINARE data is 5.41 ± 4.59 Gt a−1, indicating a balanced to slightly positive mass trend. Along with other published results, this suggests that a longer-term positive mass trend in the LAS may have slowed in recent years.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference101 articles.

1. GOCE: ESA’s First Earth Explorer Core Mission

2. Satellite radar altimetry

3. Liu J and 6 others (2012) Elevation change of Lambert-Amery system from ICESat/GLAS data. In Paper Presented at the Second Int. Workshop on Earth Observation and Remote Sensing Applications (EORSA), Shanghai, China

4. Antarctic Ice Sheet and Radar Altimetry: A Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3