Formation of an additional density peak in the bottom side of the sodium layer associated with the passage of multiple mesospheric frontal systems

Author:

Narayanan Viswanathan LakshmiORCID,Nozawa Satonori,Oyama Shin-Ichiro,Mann IngridORCID,Shiokawa Kazuo,Otsuka Yuichi,Saito Norihito,Wada Satoshi,Kawahara Takuya D.,Takahashi Toru

Abstract

Abstract. We present a detailed investigation of the formation of an additional sodium density peak at altitudes of 79–85 km below the main peak of the sodium layer based on sodium lidar and airglow imager measurements made at Ramfjordmoen near Tromsø, Norway, on the night of 19 December 2014. The airglow imager observations of OH emissions revealed four passing frontal systems that resembled mesospheric bores, which typically occur in ducting regions of the upper mesosphere. For about 1.5 h, the lower-altitude sodium peak had densities similar to that of the main peak of the layer around 90 km. The lower-altitude sodium peak weakened and disappeared soon after the fourth front had passed. The fourth front had weakened in intensity by the time it approached the region of lidar beams and disappeared soon afterwards. The column-integrated sodium densities increased gradually during the formation of the lower-altitude sodium peak. Temperatures measured with the lidar indicate that there was a strong thermal duct structure between 87 and 93 km. Furthermore, the temperature was enhanced below 85 km. Horizontal wind magnitudes estimated from the lidar showed strong wind shears above 93 km. We conclude that the combination of an enhanced stability region due to the temperature profile and intense wind shears have provided ideal conditions for evolution of multiple mesospheric bores revealed as frontal systems in the OH images. The downward motion associated with the fronts appeared to have brought air rich in H and O from higher altitudes into the region below 85 km, wherein the temperature was also higher. Both factors would have liberated sodium atoms from the reservoir species and suppressed the reconversion of atomic sodium into reservoir species so that the lower-altitude sodium peak could form and the column abundance could increase. The presented observations also reveal the importance of mesospheric frontal systems in bringing about significant variation of minor species over shorter temporal intervals.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference63 articles.

1. Axford, W. I. and Cunnold, D. M.: The Wind-Shear Theory of Temperate Zone Sporadic E, Radio Sci., 1, 191–197, https://doi.org/10.1002/rds196612191, 1966. a

2. Bageston, J. V., Wrasse, C. M., Hibbins, R. E., Batista, P. P., Gobbi, D., Takahashi, H., Andrioli, V. F., Fechine, J., and Denardini, C. M.: Case study of a mesospheric wall event over Ferraz station, Antarctica (62∘ S), Ann. Geophys., 29, 209–219, https://doi.org/10.5194/angeo-29-209-2011, 2011. a

3. Batista, P. P., Clemesha, B. R., Simonich, D. M., Taylor, M. J., Takahashi, H., Gobbi, D., Batista, I. S., Buriti, R. A., and De Medeiros, A. F.: Simultaneous lidar observation of a sporadic sodium layer, a “wall” event in the OH and OI5577 airglow images and the meteor winds, J. Atmos. Sol.-Terr. Phy., 64, 1327–1335, https://doi.org/10.1016/S1364-6826(02)00116-5, 2002. a

4. Brown, L. B., Gerrard, A. J., Meriwether, J. W., and Makela, J. J.: All-sky imaging observations of mesospheric fronts in OI 557.7 nm and broadband OH airglow emissions: Analysis of frontal structure, atmospheric background conditions, and potential sourcing mechanisms, J. Geophys. Res.-Atmos., 109, D19104, https://doi.org/10.1029/2003JD004223, 2004. a

5. Carrillo-Sánchez, J. D., Gómez-Martín, J. C., Bones, D. L., Nesvorný, D., Pokorný, P., Benna, M., Flynn, G. J., and Plane, J. M. C.: Cosmic dust fluxes in the atmospheres of Earth, Mars, and Venus, Icarus, 335, 113395, https://doi.org/10.1016/j.icarus.2019.113395, 2020. a

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3