Significant enhancements of the mesospheric Na layer bottom below 75 km observed by a full-diurnal-cycle lidar at Beijing (40.41° N, 116.01° E), China

Author:

Xia YuanORCID,Jiao Jing,Nozawa SatonoriORCID,Cheng Xuewu,Wang Jihong,Shi Chunhua,Du Lifang,Li Yajuan,Zheng Haoran,Li Faquan,Yang Guotao

Abstract

Abstract. Based on the full-diurnal-cycle sodium (Na) lidar observations at Beijing (40.41∘ N, 116.01∘ E), we report pronounced downward extensions of the Na layer bottomside to below 75 km near mid-December 2014. Considerable Na atoms were observed even as low as ∼ 72 km, where Na atoms are short-lived. More interestingly, an unprecedented Na density of ∼ 2500 atoms cm−3 around 75 km was observed on 17 December 2014. Such high Na atoms concentration was 2 orders of magnitude larger than that normally observed at the similar altitude region. The variations of Na density on the layer bottom were found to be accompanied by warming temperature anomalies and considerable perturbations of minor chemical species (H, O, O3) in the upper mesosphere. Different from the previous reported metal layer bottom enhancements mainly contributed by photolysis after sunrise, these observational results suggest more critical contributions were made by the Na neutral chemical reactions to the Na layer bottom extensions reported here. The time–longitudinal variations of background atmospheric parameters in the upper mesosphere and stratosphere from global satellite observations and ERA reanalysis data indicated that the anomalous structures observed near the lidar site in mid-December 2014 were associated with planetary wave (PW) activities. The anomalies of temperature and O3 perturbation showed opposite phase in the altitude range of 70–75 and 35–45 km. This implied that the vertical coupling between the mesosphere and stratosphere, possibly driven by the interactions of PW activities with background atmosphere and modulation of gravity wave (GW) filtering by stratospheric wind, contributed to the perturbations of background atmosphere. Furthermore, the bottom enhancement on 17 December 2014 was also accompanied by clear wavy signatures in the main layer. The strong downwelling regions are likely due to the superposition of tide and GW, suggesting the wave-induced adiabatic vertical motion of the air parcel contributed greatly to the formation of the much stronger Na layer bottom enhancement on 17 December 2014. These results provide a clear observational evidence for the Na layer bottom response to the planetary-scale atmospheric perturbations in addition to tide and GW through affecting the chemical balance. The results of this paper also have implications for the response of the metal layer to vertical coupling between the lower atmosphere and the mesosphere.

Funder

Natural Science Research of Jiangsu Higher Education Institutions of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3