Molecular understanding of new-particle formation from <i>α</i>-pinene between −50 and +25 °C

Author:

Simon MarioORCID,Dada LubnaORCID,Heinritzi Martin,Scholz WiebkeORCID,Stolzenburg DominikORCID,Fischer LukasORCID,Wagner Andrea C.ORCID,Kürten Andreas,Rörup Birte,He Xu-ChengORCID,Almeida João,Baalbaki RimaORCID,Baccarini AndreaORCID,Bauer Paulus S.ORCID,Beck LisaORCID,Bergen Anton,Bianchi FedericoORCID,Bräkling Steffen,Brilke SophiaORCID,Caudillo Lucia,Chen DexianORCID,Chu BiwuORCID,Dias António,Draper Danielle C.,Duplissy Jonathan,El-Haddad Imad,Finkenzeller HenningORCID,Frege CarlaORCID,Gonzalez-Carracedo Loic,Gordon HamishORCID,Granzin Manuel,Hakala Jani,Hofbauer Victoria,Hoyle Christopher R.ORCID,Kim ChanghyukORCID,Kong WeimengORCID,Lamkaddam Houssni,Lee Chuan P.ORCID,Lehtipalo KatrianneORCID,Leiminger MarkusORCID,Mai Huajun,Manninen Hanna E.,Marie GuillaumeORCID,Marten RubyORCID,Mentler Bernhard,Molteni UgoORCID,Nichman LeonidORCID,Nie Wei,Ojdanic Andrea,Onnela Antti,Partoll Eva,Petäjä TuukkaORCID,Pfeifer JoschkaORCID,Philippov MaximORCID,Quéléver Lauriane L. J.,Ranjithkumar Ananth,Rissanen Matti P.ORCID,Schallhart Simon,Schobesberger SiegfriedORCID,Schuchmann Simone,Shen Jiali,Sipilä Mikko,Steiner Gerhard,Stozhkov Yuri,Tauber ChristianORCID,Tham Yee J.ORCID,Tomé António R.,Vazquez-Pufleau Miguel,Vogel Alexander L.ORCID,Wagner Robert,Wang Mingyi,Wang Dongyu S.ORCID,Wang YonghongORCID,Weber Stefan K.ORCID,Wu Yusheng,Xiao Mao,Yan ChaoORCID,Ye PenglinORCID,Ye Qing,Zauner-Wieczorek MarcelORCID,Zhou Xueqin,Baltensperger Urs,Dommen JosefORCID,Flagan Richard C.,Hansel ArminORCID,Kulmala MarkkuORCID,Volkamer RainerORCID,Winkler Paul M.,Worsnop Douglas R.,Donahue Neil M.ORCID,Kirkby JasperORCID,Curtius JoachimORCID

Abstract

Abstract. Highly oxygenated organic molecules (HOMs) contribute substantially to the formation and growth of atmospheric aerosol particles, which affect air quality, human health and Earth's climate. HOMs are formed by rapid, gas-phase autoxidation of volatile organic compounds (VOCs) such as α-pinene, the most abundant monoterpene in the atmosphere. Due to their abundance and low volatility, HOMs can play an important role in new-particle formation (NPF) and the early growth of atmospheric aerosols, even without any further assistance of other low-volatility compounds such as sulfuric acid. Both the autoxidation reaction forming HOMs and their NPF rates are expected to be strongly dependent on temperature. However, experimental data on both effects are limited. Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN to address this question. In this study, we show that a decrease in temperature (from +25 to −50 ∘C) results in a reduced HOM yield and reduced oxidation state of the products, whereas the NPF rates (J1.7 nm) increase substantially. Measurements with two different chemical ionization mass spectrometers (using nitrate and protonated water as reagent ion, respectively) provide the molecular composition of the gaseous oxidation products, and a two-dimensional volatility basis set (2D VBS) model provides their volatility distribution. The HOM yield decreases with temperature from 6.2 % at 25 ∘C to 0.7 % at −50 ∘C. However, there is a strong reduction of the saturation vapor pressure of each oxidation state as the temperature is reduced. Overall, the reduction in volatility with temperature leads to an increase in the nucleation rates by up to 3 orders of magnitude at −50 ∘C compared with 25 ∘C. In addition, the enhancement of the nucleation rates by ions decreases with decreasing temperature, since the neutral molecular clusters have increased stability against evaporation. The resulting data quantify how the interplay between the temperature-dependent oxidation pathways and the associated vapor pressures affect biogenic NPF at the molecular level. Our measurements, therefore, improve our understanding of pure biogenic NPF for a wide range of tropospheric temperatures and precursor concentrations.

Funder

Natural Environment Research Council

U.S. Department of Energy

National Science Foundation

Russian Academy of Sciences

Vetenskapsrådet

Austrian Science Fund

Academy of Finland

FP7 Ideas: European Research Council

H2020 European Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference98 articles.

1. Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K., Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere, Nature, 502, 359–363, https://doi.org/10.1038/nature12663, 2013.

2. Ball, S. M., Hanson, D. R., Eisele, F. L., and McMurry, P. H.: Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors, J. Geophys. Res.-Atmos., 104, 23709–23718, 1999.

3. Berndt, T., Richters, S., Kaethner, R., Voigtländer, J., Stratmann, F., Sipilä, M., Kulmala, M., and Herrmann, H.: Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO2 Radicals and Their Reactions with NO, NO2, SO2, and Other RO2 Radicals, J. Phys. Chem. A, 119, 10336–10348, 2015.

4. Berndt, T., Richters, S., Jokinen, T., Hyttinen, N., Kurtén, T., Otkjær, R. V., Kjaergaard, H. G., Stratmann, F., Herrmann, H., Sipilä, M., Kulmala, M., and Ehn, M.: Hydroxyl radical-induced formation of highly oxidized organic compounds, Nat. Commun., 7, 13677, https://doi.org/10.1038/ncomms13677, 2016.

5. Berndt, T., Mentler, B., Scholz, W., Fischer, L., Herrmann, H., Kulmala, M., and Hansel, A.: Accretion Product Formation from Ozonolysis and OH Radical Reaction of α-Pinene: Mechanistic Insight and the Influence of Isoprene and Ethylene, Environ. Sci. Technol., 52, 11069–11077, https://doi.org/10.1021/acs.est.8b02210, 2018a.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3