Molecular understanding of new-particle formation from <i>α</i>-pinene between −50 and +25 °C
-
Published:2020-08-03
Issue:15
Volume:20
Page:9183-9207
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Simon MarioORCID, Dada LubnaORCID, Heinritzi Martin, Scholz WiebkeORCID, Stolzenburg DominikORCID, Fischer LukasORCID, Wagner Andrea C.ORCID, Kürten Andreas, Rörup Birte, He Xu-ChengORCID, Almeida João, Baalbaki RimaORCID, Baccarini AndreaORCID, Bauer Paulus S.ORCID, Beck LisaORCID, Bergen Anton, Bianchi FedericoORCID, Bräkling Steffen, Brilke SophiaORCID, Caudillo Lucia, Chen DexianORCID, Chu BiwuORCID, Dias António, Draper Danielle C., Duplissy Jonathan, El-Haddad Imad, Finkenzeller HenningORCID, Frege CarlaORCID, Gonzalez-Carracedo Loic, Gordon HamishORCID, Granzin Manuel, Hakala Jani, Hofbauer Victoria, Hoyle Christopher R.ORCID, Kim ChanghyukORCID, Kong WeimengORCID, Lamkaddam Houssni, Lee Chuan P.ORCID, Lehtipalo KatrianneORCID, Leiminger MarkusORCID, Mai Huajun, Manninen Hanna E., Marie GuillaumeORCID, Marten RubyORCID, Mentler Bernhard, Molteni UgoORCID, Nichman LeonidORCID, Nie Wei, Ojdanic Andrea, Onnela Antti, Partoll Eva, Petäjä TuukkaORCID, Pfeifer JoschkaORCID, Philippov MaximORCID, Quéléver Lauriane L. J., Ranjithkumar Ananth, Rissanen Matti P.ORCID, Schallhart Simon, Schobesberger SiegfriedORCID, Schuchmann Simone, Shen Jiali, Sipilä Mikko, Steiner Gerhard, Stozhkov Yuri, Tauber ChristianORCID, Tham Yee J.ORCID, Tomé António R., Vazquez-Pufleau Miguel, Vogel Alexander L.ORCID, Wagner Robert, Wang Mingyi, Wang Dongyu S.ORCID, Wang YonghongORCID, Weber Stefan K.ORCID, Wu Yusheng, Xiao Mao, Yan ChaoORCID, Ye PenglinORCID, Ye Qing, Zauner-Wieczorek MarcelORCID, Zhou Xueqin, Baltensperger Urs, Dommen JosefORCID, Flagan Richard C., Hansel ArminORCID, Kulmala MarkkuORCID, Volkamer RainerORCID, Winkler Paul M., Worsnop Douglas R., Donahue Neil M.ORCID, Kirkby JasperORCID, Curtius JoachimORCID
Abstract
Abstract. Highly oxygenated organic molecules (HOMs) contribute
substantially to the formation and growth of atmospheric aerosol particles,
which affect air quality, human health and Earth's climate. HOMs are formed
by rapid, gas-phase autoxidation of volatile organic compounds (VOCs) such
as α-pinene, the most abundant monoterpene in the atmosphere. Due to
their abundance and low volatility, HOMs can play an important role in
new-particle formation (NPF) and the early growth of atmospheric aerosols,
even without any further assistance of other low-volatility compounds such
as sulfuric acid. Both the autoxidation reaction forming HOMs and their
NPF rates are expected to be strongly dependent on
temperature. However, experimental data on both effects are limited.
Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoor
Droplets) chamber at CERN to address this question. In this study, we show
that a decrease in temperature (from +25 to −50 ∘C) results in
a reduced HOM yield and reduced oxidation state of the products, whereas the
NPF rates (J1.7 nm) increase substantially.
Measurements with two different chemical ionization mass spectrometers
(using nitrate and protonated water as reagent ion, respectively) provide
the molecular composition of the gaseous oxidation products, and a
two-dimensional volatility basis set (2D VBS) model provides their volatility
distribution. The HOM yield decreases with temperature from 6.2 % at 25 ∘C to 0.7 % at −50 ∘C. However, there is a strong
reduction of the saturation vapor pressure of each oxidation state as the
temperature is reduced. Overall, the reduction in volatility with
temperature leads to an increase in the nucleation rates by up to 3
orders of magnitude at −50 ∘C compared with 25 ∘C. In
addition, the enhancement of the nucleation rates by ions decreases with
decreasing temperature, since the neutral molecular clusters have increased
stability against evaporation. The resulting data quantify how the interplay
between the temperature-dependent oxidation pathways and the associated
vapor pressures affect biogenic NPF at the molecular
level. Our measurements, therefore, improve our understanding of pure
biogenic NPF for a wide range of tropospheric
temperatures and precursor concentrations.
Funder
Natural Environment Research Council U.S. Department of Energy National Science Foundation Russian Academy of Sciences Vetenskapsrådet Austrian Science Fund Academy of Finland FP7 Ideas: European Research Council H2020 European Research Council
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference98 articles.
1. Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,
Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A.,
Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M.,
Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin,
A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen,
T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A.,
Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M.,
Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J.,
Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F.,
Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D.,
Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M.,
Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J.,
Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A.,
Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P.,
Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U.,
Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding
of sulphuric acid–amine particle nucleation in the atmosphere, Nature, 502,
359–363, https://doi.org/10.1038/nature12663, 2013. 2. Ball, S. M., Hanson, D. R., Eisele, F. L., and McMurry, P. H.: Laboratory
studies of particle nucleation: Initial results for H2SO4, H2O, and NH3
vapors, J. Geophys. Res.-Atmos., 104, 23709–23718,
1999. 3. Berndt, T., Richters, S., Kaethner, R., Voigtländer, J., Stratmann, F.,
Sipilä, M., Kulmala, M., and Herrmann, H.: Gas-Phase Ozonolysis of
Cycloalkenes: Formation of Highly Oxidized RO2 Radicals and Their Reactions
with NO, NO2, SO2, and Other RO2 Radicals, J. Phys. Chem. A, 119, 10336–10348, 2015. 4. Berndt, T., Richters, S., Jokinen, T., Hyttinen, N., Kurtén, T.,
Otkjær, R. V., Kjaergaard, H. G., Stratmann, F., Herrmann, H.,
Sipilä, M., Kulmala, M., and Ehn, M.: Hydroxyl radical-induced formation
of highly oxidized organic compounds, Nat. Commun., 7, 13677, https://doi.org/10.1038/ncomms13677, 2016. 5. Berndt, T., Mentler, B., Scholz, W., Fischer, L., Herrmann, H., Kulmala, M.,
and Hansel, A.: Accretion Product Formation from Ozonolysis and OH Radical
Reaction of α-Pinene: Mechanistic Insight and the Influence of
Isoprene and Ethylene, Environ. Sci. Technol., 52, 11069–11077,
https://doi.org/10.1021/acs.est.8b02210, 2018a.
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|