Formation and temperature dependence of highly oxygenated organic molecules (HOMs) from Δ3-carene ozonolysis
-
Published:2024-08-29
Issue:16
Volume:24
Page:9459-9473
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Luo YuanyuanORCID, Thomsen Ditte, Iversen Emil Mark, Roldin PontusORCID, Skønager Jane Tygesen, Li LinjieORCID, Priestley Michael, Pedersen Henrik B., Hallquist MattiasORCID, Bilde MereteORCID, Glasius MarianneORCID, Ehn MikaelORCID
Abstract
Abstract. Δ3-carene is a prominent monoterpene in the atmosphere, contributing significantly to secondary organic aerosol (SOA) formation. However, knowledge about Δ3-carene oxidation pathways, particularly regarding their ability to form highly oxygenated organic molecules (HOMs), is still limited. In this study, we present HOM measurements during Δ3-carene ozonolysis under various conditions in two simulation chambers. We identified numerous HOMs (monomers: C7−10H10−18O6−14; dimers: C17−20H24−34O6−18) using a chemical ionization mass spectrometer (CIMS). Δ3-carene ozonolysis yielded higher HOM concentrations than α-pinene, with a distinct distribution, indicating differences in formation pathways. All HOM signals decreased considerably at lower temperatures, reducing the estimated molar HOM yield from ∼ 3 % at 20 °C to ∼ 0.5 % at 0 °C. Interestingly, the temperature change altered the HOM distribution, increasing the observed dimer-to-monomer ratios from roughly 0.8 at 20 °C to 1.5 at 0 °C. HOM monomers with six or seven O atoms condensed more efficiently onto particles at colder temperatures, while monomers with nine or more O atoms and all dimers condensed irreversibly even at 20 °C. Using the gas- and particle-phase chemistry kinetic multilayer model ADCHAM, we were also able to reproduce the experimentally observed HOM composition, yields, and temperature dependence.
Funder
Horizon 2020 Framework Programme Strategic Research Council Vetenskapsrådet Svenska Forskningsrådet Formas Lunds Universitet Danish Agency for Science and Higher Education Danmarks Frie Forskningsfond Danmarks Grundforskningsfond
Publisher
Copernicus GmbH
Reference68 articles.
1. Aschmann, S. M., Atkinson, R., and Arey, J.: Products of reaction of OH radicals with α-pinene, J. Geophys. Res.-Atmos., 107, ACH 6-1–ACH 6-7, 2002. 2. Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003. 3. Atkinson, R., Baulch, D., Cox, R., Hampson Jr., R., Kerr, J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data, 21, 1125–1568, https://doi.org/10.1063/1.555918 1992. 4. Bäck, J., Aalto, J., Henriksson, M., Hakola, H., He, Q., and Boy, M.: Chemodiversity of a Scots pine stand and implications for terpene air concentrations, Biogeosciences, 9, 689–702, https://doi.org/10.5194/bg-9-689-2012, 2012. 5. Baptista, L., Francisco, L. F., Dias, J. F., da Silva, E. C., dos Santos, C. V. F., de Mendonça, F. S. G., and Arbilla, G.: Theoretical study of Δ-3-(+)-carene oxidation, Phys. Chem. Chem. Phys., 16, 19376–19385, 2014.
|
|