Proximal sensing for soil carbon accounting

Author:

England Jacqueline R.,Viscarra Rossel Raphael A.ORCID

Abstract

Abstract. Maintaining or increasing soil organic carbon (C) is vital for securing food production and for mitigating greenhouse gas (GHG) emissions, climate change, and land degradation. Some land management practices in cropping, grazing, horticultural, and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one requires measurements of soil organic C concentration, bulk density, and gravel content, but using conventional laboratory-based analytical methods is expensive. Our aim here is to review the current state of proximal sensing for the development of new soil C accounting methods for emissions reporting and in emissions reduction schemes. We evaluated sensing techniques in terms of their rapidity, cost, accuracy, safety, readiness, and their state of development. The most suitable method for measuring soil organic C concentrations appears to be visible–near-infrared (vis–NIR) spectroscopy and, for bulk density, active gamma-ray attenuation. Sensors for measuring gravel have not been developed, but an interim solution with rapid wet sieving and automated measurement appears useful. Field-deployable, multi-sensor systems are needed for cost-efficient soil C accounting. Proximal sensing can be used for soil organic C accounting, but the methods need to be standardized and procedural guidelines need to be developed to ensure proficient measurement and accurate reporting and verification. These are particularly important if the schemes use financial incentives for landholders to adopt management practices to sequester soil organic C. We list and discuss requirements for developing new soil C accounting methods based on proximal sensing, including requirements for recording, verification, and auditing.

Publisher

Copernicus GmbH

Subject

Soil Science

Reference159 articles.

1. Aitkenhead, M., Donnelly, D., Coull, M., and Gwatkin, R.: Estimating Soil Properties with a Mobile Phone, in: Digital Soil Morphometrics, Progress in Soil Science Serie, edited by: Hartemink, A. E. and Minasny, B., Springer, 89–110, https://doi.org/10.1007/978-3-319-28295-4_7, 2016. a

2. Araujo, S. R., Soderstrom, M., Eriksson, J., Isendahl, C., Stenborg, P., and Dematte, J. A. M.: Determining soil properties in Amazonian Dark Earths by reflectance spectroscopy, Geoderma, 237, 308–317, https://doi.org/10.1016/j.geoderma.2014.09.014, 2015. a, b

3. Australian Government: Carbon Credits (Carbon Farming Initiative) Act 2011, https://www.legislation.gov.au/Details/C2015C00012 (last access: 6 December 2017), 2011. a

4. Australian Government: Carbon Credits (Carbon Farming Initiative) (Sequestering Carbon in Soils in Grazing Systems) Methodology Determination, https://www.legislation.gov.au/Details/F2015C00582 (last access: 6 December 2017), 2014. a, b, c

5. Australian Government: Carbon Credits (Carbon Farming Initiative – Estimating Sequestration of Carbon in Soil Using Default Values) Methodology Determination, https://www.legislation.gov.au/Details/F2016C00263 (last access: 6 December 2017), 2015. a, b

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3