Predicting Soil Organic Matter, Available Nitrogen, Available Phosphorus and Available Potassium in a Black Soil Using a Nearby Hyperspectral Sensor System

Author:

Wan Shuming12,Hou Jiaqi3,Zhao Jiangsan4ORCID,Clarke Nicholas4ORCID,Kempenaar Corné2,Chen Xueli1

Affiliation:

1. Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

2. Agrosystems Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands

3. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

4. Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Aas, Norway

Abstract

Black soils, which play an important role in agricultural production and food security, are well known for their relatively high content of soil organic matter (SOM). SOM has a significant impact on the sustainability of farmland and provides nutrients for plants. Hyperspectral imaging (HSI) in the visible and near-infrared region has shown the potential to detect soil nutrient levels in the laboratory. However, using portable spectrometers directly in the field remains challenging due to variations in soil moisture (SM). The current study used spectral data captured by a handheld spectrometer outdoors to predict SOM, available nitrogen (AN), available phosphorus (AP) and available potassium (AK) with different SM levels. Partial least squares regression (PLSR) models were established to compare the predictive performance of air-dried soil samples with SMs around 20%, 30% and 40%. The results showed that the model established using dry sample data had the best performance (RMSE = 4.47 g/kg) for the prediction of SOM, followed by AN (RMSE = 20.92 mg/kg) and AK (RMSE = 22.67 mg/kg). The AP was better predicted by the model based on 30% SM (RMSE = 8.04 mg/kg). In general, model performance deteriorated with an increase in SM, except for the case of AP. Feature wavelengths for predicting four kinds of soil properties were recommended based on variable importance in the projection (VIP), which offered useful guidance for the development of portable hyperspectral sensors based on discrete wavebands to reduce cost and save time for on-site data collection.

Funder

Sinograin II

National Key Research and Development Program “Intergovernmental Cooperation in International Science and Technology Innovation”

Agricultural Science and Technology Innovation Project of Heilongjiang Province

Heilongjiang Postdoctoral Fund

Heilongjiang Joint Laboratory of Soil Microbial Ecology

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3