How modelling paradigms affect simulated future land use change
-
Published:2021-02-23
Issue:1
Volume:12
Page:211-231
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Brown CalumORCID, Holman Ian, Rounsevell Mark
Abstract
Abstract. Land use models operating at regional to global scales are almost exclusively based on the single paradigm of economic optimisation. Models based on different paradigms are known to produce very different results, but these are not always equivalent or attributable to particular assumptions. In this study, we compare two pan-European integrated land use models that utilise the same climatic and socio-economic scenarios but which adopt fundamentally different modelling paradigms. One of these is a constrained optimising economic-equilibrium model, and the other is a stochastic agent-based model. We run both models for a range of scenario combinations and compare their projections of spatially aggregate and disaggregate land use changes and ecosystem service supply levels in food, forest and associated environmental systems. We find that the models produce very different results in some scenarios, with simulated food
production varying by up to half of total demand and the extent of intensive agriculture varying by up to 25 % of the EU land area. The
agent-based model projects more multifunctional and heterogeneous landscapes in most scenarios, providing a wider range of ecosystem services at landscape scales, as agents make individual, time-dependent decisions that reflect economic and non-economic motivations. This tendency also results in food shortages under certain scenario conditions. The optimisation model, in contrast, maintains food supply through intensification of agricultural production in the most profitable areas, sometimes at the expense of land abandonment in large parts of Europe. We relate the principal differences observed to underlying model assumptions and hypothesise that optimisation may be appropriate in scenarios that allow for coherent political and economic control of land systems, but not in scenarios in which economic and other scenario conditions prevent the changes in prices and responses required to approach economic equilibrium. In these circumstances, agent-based modelling allows explicit consideration of behavioural processes, but in doing so it provides a highly flexible account of land system development that is harder to link to underlying assumptions. We suggest that structured comparisons of parallel and transparent but paradigmatically distinct models are an important method for better understanding the potential scope and uncertainties of future land use change, particularly given the substantive differences that currently exist in the outcomes of such models.
Funder
Helmholtz Association
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference73 articles.
1. Alexander, P., Prestele, R., Verburg, P. H., Arneth, A., Baranzelli, C.,
Batista e Silva, F., Brown, C., Butler, A., Calvin, K., Dendoncker, N., Doelman, J. C., Dunford, R., Engström, K., Eitelberg, D., Fujimori, S.,
Harrison, P. A., Hasegawa, T., Havlik, P., Holzhauer, S., Humpenöder, F., Jacobs-Crisioni, C., Jain, A. K., Krisztin, T., Kyle, P., Lavalle, C., Lenton, T., Liu, J., Meiyappan, P., Popp, A., Powell, T., Sands, R. D.,
Schaldach, R., Stehfest, E., Steinbuks, J., Tabeau, A., van Meijl, H., Wise,
M. A., and Rounsevell, M. D. A.: Assessing uncertainties in land cover
projections, Global Change Biol., 23, 767–781, https://doi.org/10.1111/gcb.13447, 2017. 2. Appel, F. and Balmann, A.: Human behaviour versus optimising agents and the
resilience of farms – Insights from agent-based participatory experiments
with FarmAgriPoliS, Ecol. Complex., 40, 100731,
https://doi.org/10.1016/j.ecocom.2018.08.005, 2019. 3. Arneth, A., Brown, C., and Rounsevell, M. D. A.: Global models of human
decision-making for land-based mitigation and adaptation assessment, Nat. Clim. Change, 4, 550–557, https://doi.org/10.1038/nclimate2250, 2014. 4. Audsley, E., Trnka, M., Sabaté, S., Maspons, J., Sanchez, A., Sandars, D., Balek, J., and Pearn, K.: Interactively modelling land profitability to
estimate European agricultural and forest land use under future scenarios of
climate, socio-economics and adaptation, Climatic Change, 128, 215–227,
https://doi.org/10.1007/s10584-014-1164-6, 2015. 5. Baldos, C. and Hertel, T. W.: Looking back to move forward on model validation: insights from a global model of agricultural land use Related content Climate adaptation as mitigation: the case of agricultural investments, Environ. Res. Lett., 8, 034024, https://doi.org/10.1088/1748-9326/8/3/034024, 2013.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|