Validation of GOSAT/TANSO-FTS TIR UTLS CO<sub>2</sub> data (Version 1.0) using CONTRAIL measurements

Author:

Saitoh N.,Kimoto S.,Sugimura R.,Imasu R.,Kawakami S.,Shiomi K.,Kuze A.ORCID,Machida T.,Sawa Y.,Matsueda H.

Abstract

Abstract. The thermal infrared (TIR) band of the Thermal and Near Infrared Sensor for Carbon Observation (TANSO)–Fourier Transform Spectrometer (FTS) on board the Greenhouse Gases Observing Satellite (GOSAT) has been observing carbon dioxide (CO2) concentrations in several atmospheric layers since its launch. This study compared TANSO-FTS TIR V1.0 CO2 data and CO2 data obtained in the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project in the upper troposphere and lower stratosphere (UTLS), where the TIR band of TANSO-FTS is most sensitive to CO2 concentrations, to validate the quality of the TIR V1.0 UTLS CO2 data from 287 to 162 hPa. From a comparison made during flights between Tokyo and Sydney, the averages of the TIR upper atmospheric CO2 data agreed well with the averages of the data obtained by the CONTRAIL Continuous CO2 Measuring Experiment (CME) within 0.1 % for all of the seasons in the Southern Hemisphere. The results of a comparison for all of the eight airline routes showed that the agreement between the TIR and CONTRAIL CO2 data was within 0.5 % on average in the Northern Hemisphere, which was better than the agreement between a priori and CONTRAIL CO2 data. The quality of TIR lower stratospheric CO2 data depends largely on the information content, and therefore has a seasonal dependence. In high latitudes, TIR V1.0 lower stratospheric CO2 data are only valid in the summer. The magnitude of bias in the TIR upper atmospheric CO2 data did not have a clear longitudinal dependence. The comparison results for flights in northern low and middle latitudes showed that the agreement between TIR and CONTRAIL CO2 data in the upper troposphere was worse in the spring and summer than in the fall and winter. This could be attributed to a larger negative bias in the upper atmospheric a priori CO2 data in the spring and summer and a seasonal dependence of spectral bias in TANSO-FTS TIR Level 1B (L1B) radiance data. The negative bias in northern middle latitudes made the maximum of TIR CO2 concentrations lower than that of CONTRAIL CO2 concentrations, which leads to underestimate the amplitude of CO2 seasonal variation.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3