Abstract
Abstract. We study soliton collisions in the Dyachenko–Zakharov equation for the envelope of gravity waves in deep water. The numerical simulations of the soliton interactions revealed several fundamentally different effects when compared to analytical two-soliton solutions of the nonlinear Schrodinger equation. The relative phase of the solitons is shown to be the key parameter determining the dynamics of the interaction. We find that the maximum of the wave field can significantly exceed the sum of the soliton amplitudes. The solitons lose up to a few percent of their energy during the collisions due to radiation of incoherent waves and in addition exchange energy with each other. The level of the energy loss increases with certain synchronization of soliton phases. Each of the solitons can gain or lose the energy after collision, resulting in increase or decrease in the amplitude. The magnitude of the space shifts that solitons acquire after collisions depends on the relative phase and can be either positive or negative.
Funder
Russian Science Foundation
Russian Foundation for Basic Research
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献