Abstract
Pairwise interactions of particle-like waves (such as solitons and breathers) are important elementary processes that play a key role in the formation of the rarefied soliton gas statistics. Such waves appear in different physical systems such as deep water, shallow water waves, internal waves in the stratified ocean, and optical fibers. We study the features of different regimes of collisions between a soliton and a breather in the framework of the focusing modified Korteweg–de Vries equation, where cubic nonlinearity is essential. The relative phase of these structures is an important parameter determining the dynamics of soliton–breather collisions. Two series of experiments with different values of the breather’s and soliton’s relative phases were conducted. The waves’ amplitudes resulting from the interaction of coherent structures depending on their relative phase at the moment of collision were analyzed. Wave field moments, which play a decisive role in the statistics of soliton gases, were determined.
Funder
Russian Foundation for Basic Research
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献