Interrelations between surface, boundary layer, and columnar aerosol properties derived in summer and early autumn over a continental urban site in Warsaw, Poland

Author:

Wang Dongxiang,Szczepanik Dominika,Stachlewska Iwona S.ORCID

Abstract

Abstract. PollyXT Raman polarization lidar observations were performed at the Remote Sensing Laboratory (RS-Lab) in Warsaw (52.2109∘ N, 20.9826∘ E), Poland, in the framework of the European Aerosol Research Lidar Network (EARLINET) and the Aerosol, Clouds, and Trace gases Research Infrastructure (ACTRIS) projects. Data collected in July, August, and September of 2013, 2015, and 2016 were analysed using the classical Raman approach. In total, 246 sets of intact profiles, each set comprising particle extinction (α) and backscatter coefficients (β) as well as linear particle depolarization ratios (δ) at 355 nm and 532 nm, were derived for statistical investigations and stored in the EARLINET/ACTRIS database. The main analysis was focused on intensive optical properties obtained within the atmospheric boundary layer (ABL). Their interrelations were discussed for different periods: the entire day; nighttime, with respect to the nocturnal boundary layer (NL) and the residual boundary layer (RL); at sunrise, with respect to the morning transition boundary layer (MTL); and from late afternoon until sunset, with respect to the well-mixed boundary layer (WML). Within the boundary layer, the lidar-derived optical properties (entire day, 246 sets) revealed a mean aerosol optical depth (AODABL) of 0.20±0.10 at 355 nm and 0.11±0.06 at 532 nm; a mean Ångström exponent (ÅEABL) of 1.54±0.37; a mean lidar ratio (LRABL) of 48±17 sr at 355 nm and 41±15 sr at 532 nm; a mean linear particle depolarization ratio (δABL) of 0.02±0.01 at 355 nm and 0.05±0.01 at 532 nm; and a mean water vapour mixing ratio (WVABL) of 8.28±2.46 g kg−1. In addition, the lidar-derived daytime boundary layer optical properties (for the MTL and WML) were compared with the corresponding daytime columnar aerosol properties derived from the multi-filter rotating shadowband radiometer (MFR-7) measuring within the National Aerosol Research Network (PolandAOD-NET) and the CE318 sun photometer of the Aerosol Robotic NETwork (AERONET). A high linear correlation of the columnar aerosol optical depth values from the two latter instruments was obtained in Warsaw (a correlation coefficient of 0.98 with a standard deviation of 0.02). The contribution of the aerosol load in the summer and early-autumn free troposphere can result in an AODCL value that is twice as high as the AODABL over Warsaw. The occurrence of a turbulence-driven aerosol burst from the boundary layer into the free troposphere can further increase this difference. Aerosol within the ABL and in the free troposphere was interpreted based on comparisons of the properties derived at different altitudes with values reported in the literature, which were characteristic for different aerosol types, in combination with backward trajectory calculations, satellite data, and model outputs. Within the boundary layer, the aerosol consisted of either urban anthropogenic pollution (∼ 61 %) or mixtures of anthropogenic aerosol with biomass-burning aerosol (< 14 %), local pollen (< 7 %), or Arctic marine particles (< 5 %). No significant contribution of mineral dust was found in the boundary layer. The lidar-derived atmospheric boundary layer height (ABLH) and the AODABL exhibited a positive correlation (R of 0.76), associated with the local anthropogenic pollution (most pronounced for the RL and WML). A positive correlation of the AODABL and LRABL and a negative correlation of the ÅEABL and LRABL, as well as the expected negative trends for the WVABL (and surface relative humidity, RH) and δABL, were observed. Relations of the lidar-derived aerosol properties within the ABL and the surface in situ measurements of particulate matter with an aerodynamic diameter less than 10 µm (PM10) and less than 2.5 µm (PM2.5) measured by the Warsaw Regional Inspectorate for Environmental Protection (WIOS) network, and the fine-to-coarse mass ratio (FCMR) were investigated. The FCMR and surface RH showed a positive correlation even at nighttime (R of 0.71 for the MTL, 0.63 for the WML, and 0.6 for the NL), which generally lacked statistically significant relations. A weak negative correlation of the FCMR and δABL (more pronounced at 532 nm at nighttime) and no casual relation between the FCMR and ÅEABL were found. Most interestingly, distinct differences were observed for the morning transition layer (MTL) and the well-mixed layer (WML). The MTL ranged up to 0.6–1 km, and was characterized by a lower AODABL(<0.12), wetter conditions (RH 50–80 %), smaller particles (ÅEABL of 1–2.2; FCMR from 0.5 to 3), and a low LRABL of between 20 and 40 sr. The WML ranged up to 1–2.5 km and exhibited a higher AODABL (reaching up to 0.45), drier conditions (RH 25–60  %), larger particles (ÅEABL of 0.8–1.7; FCMR of 0.2–1.5), and a higher LRABL of up to 90 sr.

Funder

Horizon 2020 Framework Programme

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3