Biogenic and anthropogenic sources of aerosols at the High Arctic site Villum Research Station
-
Published:2019-08-13
Issue:15
Volume:19
Page:10239-10256
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Nielsen Ingeborg E., Skov HenrikORCID, Massling Andreas, Eriksson Axel C., Dall'Osto Manuel, Junninen Heikki, Sarnela Nina, Lange Robert, Collier Sonya, Zhang Qi, Cappa Christopher D.ORCID, Nøjgaard Jacob K.
Abstract
Abstract. There are limited measurements of the chemical
composition, abundance and sources of atmospheric particles in the High
Arctic To address this, we report 93 d of soot particle aerosol mass
spectrometer (SP-AMS) data collected from 20 February to 23 May
2015 at Villum Research Station (VRS) in northern Greenland
(81∘36′ N). During this period, we observed the Arctic haze
phenomenon with elevated PM1 concentrations ranging from an average of
2.3, 2.3 and 3.3 µg m−3 in February, March and April, respectively, to 1.2 µg m−3 in May. Particulate sulfate (SO42-) accounted
for 66 % of the non-refractory PM1 with the highest concentration until
the end of April and decreasing in May. The second most abundant species was
organic aerosol (OA) (24 %). Both OA and PM1, estimated from the sum
of all collected species, showed a marked decrease throughout May in
accordance with the polar front moving north, together with changes in
aerosol removal processes. The highest refractory black carbon (rBC)
concentrations were found in the first month of the campaign, averaging 0.2 µg m−3. In March and April, rBC averaged 0.1 µg m−3 while decreasing to 0.02 µg m−3 in May. Positive matrix factorization (PMF) of the OA mass spectra yielded three
factors: (1) a hydrocarbon-like organic aerosol (HOA) factor, which was
dominated by primary aerosols and accounted for 12 % of OA mass, (2) an
Arctic haze organic aerosol (AOA) factor and (3) a more oxygenated marine
organic aerosol (MOA) factor. AOA dominated until mid-April (64 %–81 %
of OA), while being nearly absent from the end of May and correlated
significantly with SO42-, suggesting the main part of that factor
is secondary OA. The MOA emerged late at the end of March, where it
increased with solar radiation and reduced sea ice extent and dominated OA
for the rest of the campaign until the end of May (24 %–74 % of OA), while
AOA was nearly absent. The highest O∕C ratio (0.95) and S∕C ratio (0.011)
was found for MOA. Our data support the current understanding that Arctic
aerosols are highly influenced by secondary aerosol formation and receives an
important contribution from marine emissions during Arctic spring in remote
High Arctic areas. In view of a changing Arctic climate with changing
sea-ice extent, biogenic processes and corresponding source strengths,
highly time-resolved data are needed in order to elucidate the components
dominating aerosol concentrations and enhance the understanding of the
processes taking place.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference121 articles.
1. Abbatt, J. P. D., Leaitch, W. R., Aliabadi, A. A., Bertram, A. K., Blanchet, J.-P., Boivin-Rioux, A., Bozem, H., Burkart, J., Chang, R. Y. W., Charette, J., Chaubey, J. P., Christensen, R. J., Cirisan, A., Collins, D. B., Croft, B., Dionne, J., Evans, G. J., Fletcher, C. G., Galí, M., Ghahremaninezhad, R., Girard, E., Gong, W., Gosselin, M., Gourdal, M., Hanna, S. J., Hayashida, H., Herber, A. B., Hesaraki, S., Hoor, P., Huang, L., Hussherr, R., Irish, V. E., Keita, S. A., Kodros, J. K., Köllner, F., Kolonjari, F., Kunkel, D., Ladino, L. A., Law, K., Levasseur, M., Libois, Q., Liggio, J., Lizotte, M., Macdonald, K. M., Mahmood, R., Martin, R. V., Mason, R. H., Miller, L. A., Moravek, A., Mortenson, E., Mungall, E. L., Murphy, J. G., Namazi, M., Norman, A.-L., O'Neill, N. T., Pierce, J. R., Russell, L. M., Schneider, J., Schulz, H., Sharma, S., Si, M., Staebler, R. M., Steiner, N. S., Thomas, J. L., von Salzen, K., Wentzell, J. J. B., Willis, M. D., Wentworth, G. R., Xu, J.-W., and Yakobi-Hancock, J. D.: Overview paper: New insights into aerosol and climate in the Arctic, Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, 2019. 2. Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A.,
Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun,
Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M.
R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy,
J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O∕C and OM∕OC ratios
of primary, secondary, and ambient organic aerosols with high-resolution
time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42,
4478–4485, https://doi.org/10.1021/es703009q, 2008. 3. Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F., Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9, 6633–6653, https://doi.org/10.5194/acp-9-6633-2009, 2009. 4. Allan, J. D., Jimenez, J. L., Williams, P. I., Alfarra, M. R., Bower, K. N.,
Jayne, J. T., Coe, H., and Worsnop, D. R.: Quantitative sampling using an
Aerodyne aerosol mass spectrometer: 1. Techniques of data interpretation and
error analysis, J. Geophys. Res.-Atmos., 108, 4283, https://doi.org/10.1029/2003jd001607, 2003. 5. Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez,
J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R.,
Jayne, J. T., and Worsnop, D. R.: A generalised method for the extraction of
chemically resolved mass spectra from Aerodyne aerosol mass spectrometer
data, J. Aerosol Sci., 35, 909–922, https://doi.org/10.1016/j.jaerosci.2004.02.007, 2004.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|