Chemical composition and hydrolysis of organic nitrate aerosol formed from hydroxyl and nitrate radical oxidation of <i>α</i>-pinene and <i>β</i>-pinene

Author:

Takeuchi Masayuki,Ng Nga L.ORCID

Abstract

Abstract. Atmospheric organic nitrate (ON) is thought to play a crucial role in the formation potential of ozone and aerosol, which are the leading air pollutants of concern across the world. Limited fundamental knowledge and understanding of the life cycles of ON currently hinder the ability to quantitatively assess its impacts on the formation of these pollutants. Although hydrolysis is currently considered an important loss mechanism of ON based on prior field measurement studies, this process for atmospherically relevant ON has not been well constrained by fundamental laboratory studies. In this comprehensive study, we investigated the chemical composition and hydrolysis process of particulate ON (pON) formed from the oxidation of α-pinene and β-pinene by hydroxyl (OH⚫) and nitrate radicals (NO3⚫). For pON that undergoes hydrolysis, the hydrolysis lifetime is determined to be no more than 30 min for all systems explored. This is significantly shorter than those reported in previous chamber studies (i.e., 3–6 h) but is consistent with the reported lifetime from bulk solution measurement studies (i.e., 0.02–8.8 h). The discrepancy appears to stem from the choice of proxy used to estimate the hydrolysis lifetime. The measured hydrolyzable fractions of pON (FH) in the α-pinene + OH⚫, β-pinene + OH⚫, α-pinene + NO3⚫, and β-pinene + NO3⚫ systems are 23 %–32 %, 27 %–34 %, 9 %–17 %, and 9 %–15 %, respectively. While a very low FH for the NO3⚫ oxidation system is expected based on prior studies, FH for the OH⚫ oxidation system is surprisingly lower than predicted in past studies. Overall, the hydrolysis lifetime as well as FH obtained in this study serve as experimentally constrained parameters that are required in regional and global chemical transport models to accurately evaluate the impacts of ON on nitrogen budget and formation of ozone and aerosol.

Funder

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3