Insight into the composition of organic compounds ( ≥  C<sub>6</sub>) in PM<sub>2.5</sub> in wintertime in Beijing, China

Author:

Lyu RuiheORCID,Shi Zongbo,Alam Mohammed Salim,Wu Xuefang,Liu Di,Vu Tuan V.,Stark Christopher,Fu PingqingORCID,Feng Yinchang,Harrison Roy M.ORCID

Abstract

Abstract. Organic matter is a major component of PM2.5 in megacities. In order to understand the detailed characteristics of organic compounds (≥ C6) at a molecular level on non-haze and haze days, we determined more than 300 organic compounds in the PM2.5 from an urban area of Beijing collected in November–December 2016 using two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-ToF-MS). The identified organic compounds have been classified into groups, and quantitative methods were used to calculate their concentrations. Primary emission sources make significant contributions to the atmospheric organic compounds, and six groups (including n-alkanes, polycyclic aromatic hydrocarbons – PAHs, levoglucosan, branched alkanes, n-alkenes and alkyl-benzenes) account for 66 % of total identified organic compound mass. In addition, PAHs and oxygenated PAHs (O-PAHs) were abundant amongst the atmospheric organic compounds on both haze and non-haze days. The most abundant hydrocarbon groups were observed with a carbon atom range of C19–C28. In addition, the total concentration of unidentified compounds present in the chromatogram was estimated in the present study. The total identified compounds account for approximately 47 % of total organic compounds (≥ C6) in the chromatogram on both the non-haze and haze days. The total mass concentrations of organic compounds (≥ C6) in the chromatogram were 4.0 and 7.4 µg m−3 on the non-haze and haze days, respectively, accounting for 26.4 % and 18.5 % of organic matter, respectively, on those days estimated from the total organic carbon concentration. Ratios of individual compound concentrations between haze and non-haze days do not give a clear indication of the degree of oxidation, but the overall distribution of organic compounds in the chromatogram provides strong evidence that the organic aerosol is less GC volatile and hence more highly oxidized on haze days.

Funder

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3