Measurement report: Brown carbon aerosol in polluted urban air of the North China Plain – day–night differences in the chromophores and optical properties

Author:

Gong Yuquan,Huang Ru-Jin,Yang Lu,Wang Ting,Yuan Wei,Xu WeiORCID,Cao Wenjuan,Wang YangORCID,Li YongjieORCID

Abstract

Abstract. Brown carbon (BrC) aerosol is light-absorbing organic carbon that affects radiative forcing and atmospheric photochemistry. The BrC chromophoric composition and its linkage to optical properties at the molecular level, however, are still not well characterized. In this study, we investigate the day–night differences in the chromophoric composition (38 species) and optical properties of water-soluble and water-insoluble BrC fractions (WS-BrC and WIS-BrC) in aerosol samples collected in Shijiazhuang, one of the most polluted cities in China. We found that the light absorption contribution of WS-BrC to total BrC at 365 nm was higher during the day (62±8 %) than during the night (47±26 %), which is in line with the difference in chromophoric polarity between daytime (more polar nitrated aromatics) and nighttime (more less-polar polycyclic aromatic hydrocarbons, PAHs). The high polarity and water solubility of BrC in the daytime suggests the enhanced contribution of secondary formation to BrC during the day. There was a decrease in the mass absorption efficiency of BrC from nighttime to daytime (2.88±0.24 vs. 2.58±0.14 for WS-BrC and 1.43±0.83 vs. 1.02±0.49 m2 g C−1 for WIS-BrC, respectively). Large polycyclic aromatic hydrocarbons (PAHs) with four- to six-ring PAHs and nitrophenols contributed to 76.7 % of the total light absorption between 300–420 nm at nighttime, while nitrocatechols and two- to three-ring oxygenated PAHs accounted for 52.6 % of the total light absorption during the day. The total mass concentrations of the identified chromophores showed larger day–night difference during the low-pollution period (day-to-night ratio of 4.3) than during the high-pollution period (day-to-night ratio of 1.8). The large day–night difference in BrC composition and absorption, therefore, should be considered when estimating the sources, atmospheric processes, and impacts of BrC.

Funder

National Natural Science Foundation of China

CAS Key Laboratory of Health Informatics

Chinese Academy of Sciences

State Key Laboratory of Loess and Quaternary Geology

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3