Dimethyl sulfide and its role in aerosol formation and growth in the Arctic summer – a modelling study
-
Published:2019-11-29
Issue:23
Volume:19
Page:14455-14476
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Ghahremaninezhad Roghayeh, Gong Wanmin, Galí MartíORCID, Norman Ann-Lise, Beagley Stephen R.ORCID, Akingunola Ayodeji, Zheng Qiong, Lupu AlexandruORCID, Lizotte MartineORCID, Levasseur Maurice, Leaitch W. Richard
Abstract
Abstract. Atmospheric dimethyl sulfide, DMS(g), is a climatically important
sulfur compound and is the main source of biogenic sulfate aerosol in the
Arctic atmosphere. DMS(g) production and emission to the atmosphere increase
during the summer due to the greater ice-free sea surface and higher biological
activity. We implemented DMS(g) in the Environment and Climate Change Canada’s (ECCC) online air quality forecast model, GEM-MACH (Global Environmental Multiscale–Modelling Air quality and CHemistry), and compared model simulations with DMS(g) measurements made in Baffin Bay and
the Canadian Arctic Archipelago in July and August 2014. Two seawater
DMS(aq) datasets were used as input for the simulations: (1) a DMS(aq)
climatology dataset based on seawater concentration measurements (Lana et
al., 2011) and (2) a DMS(aq) dataset based on satellite detection (Galí et
al., 2018). In general, GEM-MACH simulations under-predict DMS(g)
measurements, which is likely due to the negative biases in both DMS(aq) datasets. However, a
higher correlation and smaller bias were obtained with the satellite
dataset. Agreement with the observations improved when
climatological values were replaced by DMS(aq) in situ values that were measured concurrently with
atmospheric observations over Baffin Bay and the Lancaster Sound area in July 2014. The addition of DMS(g) to the GEM-MACH model resulted in a significant
increase in atmospheric SO2 for some regions of the Canadian Arctic (up
to 100 %). Analysis of the size-segregated sulfate aerosol in the model
shows that a significant increase in sulfate mass occurs for particles with
a diameter smaller than 200 nm due to the formation and growth of biogenic
aerosol at high latitudes (>70∘ N). The
enhancement in sulfate particles is most significant in the size range from 50
to 100 nm; however, this enhancement is stronger in the 200–1000 nm size
range at lower latitudes (<70∘ N). These results
emphasize the important role of DMS(g) in the formation and growth of fine
and ultrafine sulfate-containing particles in the Arctic during the
summertime.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference96 articles.
1. Abbatt, J. P. D., Leaitch, W. R., Aliabadi, A. A., Bertram, A. K., Blanchet, J.-P.,
Boivin-Rioux, A., Bozem, H., Burkart, J., Chang, R. Y. W., Charette, J., Chaubey, J. P., Christensen, R. J., Cirisan, A., Collins, D. B., Croft, B., Dionne, J., Evans, G. J., Fletcher, C. G., Galí, M., Ghahremaninezhad, R., Girard, E., Gong, W., Gosselin, M., Gourdal, M., Hanna, S. J., Hayashida, H., Herber, A. B., Hesaraki, S., Hoor, P., Huang, L., Hussherr, R., Irish, V. E., Keita, S. A., Kodros, J. K., Köllner, F., Kolonjari, F., Kunkel, D., Ladino, L. A., Law, K., Levasseur, M., Libois, Q., Liggio, J., Lizotte, M., Macdonald, K. M., Mahmood, R., Martin, R. V., Mason, R. H., Miller, L. A., Moravek, A., Mortenson, E., Mungall, E. L., Murphy, J. G., Namazi, M., Norman, A.-L., O'Neill, N. T., Pierce, J. R., Russell, L. M., Schneider, J., Schulz, H., Sharma, S., Si, M., Staebler, R. M., Steiner, N. S., Thomas, J. L., von Salzen, K., Wentzell, J. J. B., Willis, M. D., Wentworth, G. R., Xu, J.-W., and Yakobi-Hancock, J. D.: Overview paper: New insights into aerosol and climate in the Arctic, Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, 2019. 2. Akingunola, A., Makar, P. A., Zhang, J., Darlington, A., Li, S.-M., Gordon, M., Moran, M. D., and Zheng, Q.: A chemical transport model study of plume-rise and particle size distribution for the Athabasca oil sands, Atmos. Chem. Phys., 18, 8667–8688, https://doi.org/10.5194/acp-18-8667-2018, 2018. 3. Alcolombri, U., Ben-Dor, S., Feldmesser, E., Levin, Y., Tawfik, D. S., and
Vardi, A.: Identification of the algal dimethyl sulfide–releasing enzyme: a
missing link in the marine sulfur cycle, Science, 348, 1466–1469,
2015. 4. Andreae, M. O.: Ocean-atmosphere interactions in the global biogeochemical
sulfur cycle, Mar. Chem., 30, 1–29, 1990. 5. Ayers, G. P. and Cainey, J. M.: The CLAW hypothesis: a review of the major
developments, Environ. Chem., 4, 366–374, 2007.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|