Rapid growth of Aitken-mode particles during Arctic summer by fog chemical processing and its implication

Author:

Kecorius Simonas12ORCID,Hoffmann Erik H3ORCID,Tilgner Andreas3ORCID,Barrientos-Velasco Carola4ORCID,van Pinxteren Manuela3ORCID,Zeppenfeld Sebastian3ORCID,Vogl Teresa5ORCID,Madueño Leizel1ORCID,Lovrić Mario6ORCID,Wiedensohler Alfred1ORCID,Kulmala Markku7ORCID,Paasonen Pauli7ORCID,Herrmann Hartmut3ORCID

Affiliation:

1. Atmospheric Microphysics, Leibniz Institute for Tropospheric Research (TROPOS) , Leipzig 04318 , Germany

2. Present address: Institute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health , Neuherberg 85764 , Germany

3. Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research (TROPOS) , Leipzig 04318 , Germany

4. Department of Remote Sensing of Atmospheric Processes, Leibniz Institute for Tropospheric Research (TROPOS) , Leipzig 04318 , Germany

5. Institute of Meteorology, Universität Leipzig , Leipzig 04103 , Germany

6. Department of Methods and Algorithms for AI, Know-Center , Graz 8010 , Austria

7. Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki , Helsinki 00014 , Finland

Abstract

Abstract In the Arctic, new particle formation (NPF) and subsequent growth processes are the keys to produce Aitken-mode particles, which under certain conditions can act as cloud condensation nuclei (CCNs). The activation of Aitken-mode particles increases the CCN budget of Arctic low-level clouds and, accordingly, affects Arctic climate forcing. However, the growth mechanism of Aitken-mode particles from NPF into CCN range in the summertime Arctic boundary layer remains a subject of current research. In this combined Arctic cruise field and modeling study, we investigated Aitken-mode particle growth to sizes above 80 nm. A mechanism is suggested that explains how Aitken-mode particles can become CCN without requiring high water vapor supersaturation. Model simulations suggest the formation of semivolatile compounds, such as methanesulfonic acid (MSA) in fog droplets. When the fog droplets evaporate, these compounds repartition from CCNs into the gas phase and into the condensed phase of nonactivated Aitken-mode particles. For MSA, a mass increase factor of 18 is modeled. The postfog redistribution mechanism of semivolatile acidic and basic compounds could explain the observed growth of >20 nm h−1 for 60-nm particles to sizes above 100 nm. Overall, this study implies that the increasing frequency of NPF and fog-related particle processing can affect Arctic cloud properties in the summertime boundary layer.

Publisher

Oxford University Press (OUP)

Reference74 articles.

1. The Arctic shifts to a new normal;Jeffries;Phys Today,2013

2. The Arctic's rapidly shrinking sea ice cover: a research synthesis;Stroeve;Clim Change.,2012

3. Arctic sea ice volume changes in terms of age as revealed from satellite observations;Bi;IEEE J Stars,2018

4. Percolation blockage: a process that enables melt pond formation on first year Arctic sea ice;Polashenski;J Geophys Res Oceans,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3