Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016
-
Published:2019-08-26
Issue:16
Volume:19
Page:10757-10772
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Marsing AndreasORCID, Jurkat-Witschas Tina, Grooß Jens-UweORCID, Kaufmann StefanORCID, Heller Romy, Engel AndreasORCID, Hoor PeterORCID, Krause JensORCID, Voigt ChristianeORCID
Abstract
Abstract. Activated chlorine compounds in the polar winter stratosphere drive catalytic cycles that deplete ozone and methane, whose abundances are highly relevant to the evolution of global climate. The present work introduces a novel dataset of in situ measurements of relevant chlorine species in the lowermost Arctic stratosphere from the aircraft mission POLSTRACC–GW-LCYCLE–SALSA during winter 2015/2016. The major stages of chemical evolution of the lower polar vortex are presented in a consistent series of high-resolution mass spectrometric observations of HCl and ClONO2. Simultaneous measurements of CFC-12 are used to derive total inorganic chlorine (Cly) and active chlorine (ClOx). The new data highlight an altitude dependence of the pathway for chlorine deactivation in the lowermost vortex with HCl dominating below the 380 K isentropic surface and ClONO2 prevailing above. Further, we show that the Chemical Lagrangian Model of the Stratosphere (CLaMS) is generally able to reproduce the chemical evolution of the lower polar vortex chlorine budget, except for a bias in HCl concentrations. The model is used to relate local measurements to the vortex-wide evolution. The results are aimed at fostering our understanding of the climate impact of chlorine chemistry, providing new observational data to complement satellite data and assess model performance in the climate-sensitive upper troposphere and lower stratosphere region.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference70 articles.
1. Bekki, S., Rap, A., Poulain, V., Dhomse, S., Marchand, M., Lefevre, F.,
Forster, P., Szopa, S., and Chipperfield, M.: Climate impact of stratospheric
ozone recovery, Geophys. Res. Lett., 40, 2796–2800, https://doi.org/10.1002/grl.50358,
2013. a 2. Bonne, G. P., Stimpfle, R. M., Cohen, R. C., Voss, P. B., Perkins, K. K.,
Anderson, J. G., Salawitch, R. J., Elkins, J. W., Dutton, G. S., Jucks,
K. W., and Toon, G. C.: An examination of the inorganic chlorine budget in
the lower stratosphere, J. Geophy. Res.-Atmos., 105, 1957–1971,
https://doi.org/10.1029/1999jd900996, 2000. a 3. Carslaw, K. S., Luo, B. P., Clegg, S. L., Peter, T., Brimblecombe, P., and
Crutzen, P. J.: Stratospheric aerosol growth and HNO3 gas phase
depletion from coupled HNO3 and water uptake by liquid particles,
Geophys. Res. Lett., 21, 2479–2482, https://doi.org/10.1029/94gl02799, 1994. a 4. Crutzen, P. J. and Arnold, F.: Nitric acid cloud formation in the cold
Antarctic stratosphere: a major cause for the springtime “ozone hole”,
Nature, 324, 651–655, https://doi.org/10.1038/324651a0, 1986. a 5. Daniel, J. S., Solomon, S., Portmann, R. W., and Garcia, R. R.: Stratospheric
ozone destruction: The importance of bromine relative to chlorine, J.
Geophys. Res.-Atmos., 104, 23871–23880, https://doi.org/10.1029/1999jd900381,
1999. a
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|