The lifetime of nitrogen oxides in an isoprene-dominated forest
-
Published:2016-06-23
Issue:12
Volume:16
Page:7623-7637
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Romer Paul S.ORCID, Duffey Kaitlin C., Wooldridge Paul J., Allen Hannah M., Ayres Benjamin R., Brown Steven S., Brune William H.ORCID, Crounse John D.ORCID, de Gouw JoostORCID, Draper Danielle C., Feiner Philip A., Fry Juliane L.ORCID, Goldstein Allen H.ORCID, Koss Abigail, Misztal Pawel K.ORCID, Nguyen Tran B.ORCID, Olson Kevin, Teng Alex P., Wennberg Paul O.ORCID, Wild Robert J., Zhang Li, Cohen Ronald C.ORCID
Abstract
Abstract. The lifetime of nitrogen oxides (NOx) affects the concentration and distribution of NOx and the spatial patterns of nitrogen deposition. Despite its importance, the lifetime of NOx is poorly constrained in rural and remote continental regions. We use measurements from a site in central Alabama during the Southern Oxidant and Aerosol Study (SOAS) in summer 2013 to provide new insights into the chemistry of NOx and NOx reservoirs. We find that the lifetime of NOx during the daytime is controlled primarily by the production and loss of alkyl and multifunctional nitrates (ΣANs). During SOAS, ΣAN production was rapid, averaging 90 ppt h−1 during the day, and occurred predominantly during isoprene oxidation. Analysis of the ΣAN and HNO3 budgets indicate that ΣANs have an average lifetime of under 2 h, and that approximately 45 % of the ΣANs produced at this site are rapidly hydrolyzed to produce nitric acid. We find that ΣAN hydrolysis is the largest source of HNO3 and the primary pathway to permanent removal of NOx from the boundary layer in this location. Using these new constraints on the fate of ΣANs, we find that the NOx lifetime is 11 ± 5 h under typical midday conditions. The lifetime is extended by storage of NOx in temporary reservoirs, including acyl peroxy nitrates and ΣANs.
Funder
National Oceanic and Atmospheric Administration National Science Foundation U.S. Environmental Protection Agency
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference91 articles.
1. Allen, H. M., Draper, D. C., Ayres, B. R., Ault, A., Bondy, A., Takahama, S., Modini, R. L., Baumann, K., Edgerton, E., Knote, C., Laskin, A., Wang, B., and Fry, J. L.: Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study, Atmos. Chem. Phys., 15, 10669–10685, https://doi.org/10.5194/acp-15-10669-2015, 2015. 2. Alvarado, M. J., Logan, J. A., Mao, J., Apel, E., Riemer, D., Blake, D., Cohen, R. C., Min, K.-E., Perring, A. E., Browne, E. C., Wooldridge, P. J., Diskin, G. S., Sachse, G. W., Fuelberg, H., Sessions, W. R., Harrigan, D. L., Huey, G., Liao, J., Case-Hanks, A., Jimenez, J. L., Cubison, M. J., Vay, S. A., Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Flocke, F. M., Pollack, I. B., Wennberg, P. O., Kurten, A., Crounse, J., St. Clair, J. M., Wisthaler, A., Mikoviny, T., Yantosca, R. M., Carouge, C. C., and Le Sager, P.: Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739–9760, https://doi.org/10.5194/acp-10-9739-2010, 2010. 3. Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003. 4. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006. 5. Ayres, B. R., Allen, H. M., Draper, D. C., Brown, S. S., Wild, R. J., Jimenez, J. L., Day, D. A., Campuzano-Jost, P., Hu, W., de Gouw, J., Koss, A., Cohen, R. C., Duffey, K. C., Romer, P., Baumann, K., Edgerton, E., Takahama, S., Thornton, J. A., Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Wennberg, P. O., Nguyen, T. B., Teng, A., Goldstein, A. H., Olson, K., and Fry, J. L.: Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States, Atmos. Chem. Phys., 15, 13377–13392, https://doi.org/10.5194/acp-15-13377-2015, 2015.
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|