Observational Evidence of Unknown NOx Source and Its Perturbation of Oxidative Capacity in Bermuda's Marine Boundary Layer

Author:

Wang Youfeng123,Zhu Yuting2ORCID,Ye Chunxiang1ORCID,Zhou Xianliang24,Elshorbany Yasin5ORCID,Hayden Matthew6ORCID,Peters Andrew J.6ORCID

Affiliation:

1. SKL‐ESPC & SEPKL‐AERM, College of Environmental Sciences and Engineering, and Center for Environment and Science Peking University Beijing China

2. New York State Department of Health Wadsworth Center Albany NY USA

3. Beijing Municipal Ecological and Environmental Monitoring Center Beijing China

4. Department of Environmental Health Sciences State University of New York Albany NY USA

5. College of Arts & Sciences University of South Florida St. Petersburg FL USA

6. Bermuda Institute of Ocean Sciences St George's Bermuda

Abstract

AbstractNitrogen oxides (NOx) are key intermediates in the atmospheric cycling of reactive nitrogen, the spatiotemporal distribution of which modulates ozone (O3) production. Field campaigns were conducted at the Tudor Hill Marine Atmospheric Observatory, Bermuda, in the spring and summer of 2019 to explore atmospheric cycling of NOx and its modulation of photochemical O3 production in the marine boundary layer. In aged, clean marine air, an atypical NO2 diel profile with a solar noon peak of 69 ± 5 pptv was recorded, challenging the classic U‐shaped diel profile with a solar noon valley characterized by fast photolysis and oxidation consumption in the daytime. This result indicated an unknown daytime NOx source excluded from the current near‐explicit chemical model, which underestimated the solar noon NOx level by 20–56 pptv and source rate by 9.7–33.5 pptv hr−1, considering the upper and lower limits of total OH reactivity and halogen photochemistry in the marine boundary layer. The observed HONO level accounted for ∼56% of the unknown NOx source, implying an unknown NOx regeneration pathway with HONO as an intermediate. The photochemical nature of the unknown NOx source maximized perturbation of photochemical OH and O3 production. The O3 abundance and production rate were underestimated by 2–4 ppbv and 28%–80%, respectively, and the OH abundance and source rate were 7%–55% and 21%–57% lower than the estimated levels with the constraint of NOx, respectively. The unknown NOx source requires urgent revision of the current understanding of reactive nitrogen cycling and the oxidative capacity of the clean marine atmosphere.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3