A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter

Author:

Eichler P.,Müller M.,D'Anna B.,Wisthaler A.ORCID

Abstract

Abstract. We herein present a novel modular inlet system designed to be coupled to low-pressure gas analyzers for online chemical characterization of semi-volatile submicron particles. The "chemical analysis of aerosol online" (CHARON) inlet consists of a gas-phase denuder for stripping off gas-phase analytes, an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. The denuder was measured to remove gas-phase organics with an efficiency > 99.999% and to transmit particles in the 100–750 nm size range with a 75–90% efficiency. The measured average particle enrichment factor in the subsampling flow from the aerodynamic lens was 25.6, which is a factor of 3 lower than the calculated theoretical optimum. We coupled the CHARON inlet to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) which quantitatively detects most organic analytes and ammonia. The combined CHARON-PTR-ToF-MS setup is thus capable of measuring both the organic and the ammonium fraction in submicron particles in real time. Individual organic compounds can be detected down to levels of 10–20 ng m−3. Two proof-of-principle studies were carried out for demonstrating the analytical power of this new instrumental setup: (i) oxygenated organics and their partitioning between the gas and the particulate phase were observed from the reaction of limonene with ozone and (ii) nicotine was measured in cigarette smoke particles demonstrating that selected organic target compounds can be detected in submicron particles in real time.

Funder

Directorate-General for Research and Innovation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3