Body weight prediction using body size measurements in Fleckvieh, Holstein, and Brown Swiss dairy cows in lactation and dry periods

Author:

Gruber Leonhard,Ledinek MariaORCID,Steininger Franz,Fuerst-Waltl Birgit,Zottl Karl,Royer Martin,Krimberger Kurt,Mayerhofer Martin,Egger-Danner Christa

Abstract

Abstract. The objective of this study was to predict cows' body weight from body size measurements and other animal data in the lactation and dry periods. During the whole year 2014, 6306 cows (on 167 commercial Austrian dairy farms) were weighed at each routine performance recording and body size measurements like heart girth (HG), belly girth (BG), and body condition score (BCS) were recorded. Data on linear traits like hip width (HW), stature, and body depth were collected three times a year. Cows belonged to the genotypes Fleckvieh (and Red Holstein crosses), Holstein, and Brown Swiss. Body measurements were tested as single predictors and in multiple regressions according to their prediction accuracy and their correlations with body weight. For validation, data sets were split randomly into independent subsets for estimation and validation. Within the prediction models with a single body measurement, heart girth influenced relationship with body weight most, with a lowest root mean square error (RMSE) of 39.0 kg, followed by belly girth (39.3 kg) and hip width (49.9 kg). All other body measurements and BCS resulted in a RMSE of higher than 50.0 kg. The model with heart and belly girth (ModelHG BG) reduced RMSE to 32.5 kg, and adding HW reduced it further to 30.4 kg (ModelHG BG HW). As RMSE and the coefficient of determination improved, genotype-specific regression coefficients for body measurements were introduced in addition to the pooled ones. The most accurate equations, ModelHG BG and ModelHG BG HW, were validated separately for the lactation and dry periods. Root mean square prediction error (RMSPE) ranged between 36.5 and 37.0 kg (ModelHG BG HW, ModelHG BG, lactation) and 39.9 and 41.3 kg (ModelHG BG HW, ModelHG BG, dry period). Accuracy of the predictions was evaluated by decomposing the mean square prediction error (MSPE) into error due to central tendency, error due to regression, and error due to disturbance. On average, 99.6 % of the variance between estimated and observed values was caused by disturbance, meaning that predictions were valid and without systematic estimation error. On the one hand, this indicates that the chosen traits sufficiently depicted factors influencing body weight. On the other hand, the data set was very heterogeneous and large. To ensure high prediction accuracy, it was necessary to include body girth traits for body weight estimation.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3