Comparative Analysis of Statistical Regression Models for Prediction of Live Weight of Korean Cattle during Growth

Author:

Na Myung Hwan1,Cho Wanhyun1,Kang Sora2,Na Inseop3ORCID

Affiliation:

1. Department of Statistics, Chonnam National University, Gwangju 61186, Republic of Korea

2. Department of Mathematics and Statistics, Chonnam National University, Gwangju 61186, Republic of Korea

3. Division of Culture Contents, Chonnam National University, Yeoso 59626, Republic of Korea

Abstract

Measuring weight during cattle growth is essential for determining their status and adjusting the feed amount. Cattle must be weighed on a scale, which is laborious and stressful and could hinder growth. Therefore, automatically predicting cattle weight could reduce stress on cattle and farm laborers. This study proposes a prediction system to measure the change in weight automatically during growth using three regression models, using environmental factors, feed intake, and weight during the period. The Bayesian inference and likelihood estimation principles estimate parameters that determine the models: the weighted regression model (WRM), Gaussian process regression model (GPRM), and Gaussian process panel model (GPPM). A posterior distribution was derived using these parameters, and a weight prediction system was implemented. An experiment was conducted using image data to evaluate model performance. The GPRM with the squared exponential kernel had the best predictive power. Next, GPRMs with polynomial and rational quadratic kernels, the linear model, and WRM had the next-best predictive power. Finally, the GPRM with the linear kernel, the linear model, and the latent growth curve model, and types of GPPM had the next-best predictive power. GPRM and WRM are statistical probability models that apply predictions to the entire cattle population. These models are expected to be useful for predicting cattle growth on farms at a population level. However, GPPM is a statistical probability model designed for measuring the weight of individual cattle. This model is anticipated to be more efficient when predicting the weight of individual cattle on farms.

Funder

Ministry of Agriculture, Food and Rural Affairs

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3