Shifting spatial patterns in German population trends: local-level hot and cold spots, 1990–2019

Author:

Leibert Tim,Wolff Manuel,Haase Annegret

Abstract

Abstract. The population development of German municipalities is characterized by pronounced regional disparities. We seek to shed new light on the shifting patterns of population development in Germany at the local level between 1990 and 2019 to understand better the drivers of population development at the local level and to initiate a debate on the (dis)advantages of longitudinal analyses of population change at the local level and the resulting methodological challenges. We address three interrelated questions: (1) how do patterns of local population trends shift over time and in space? (2) Where are the hot and cold spots of population development, and how stable are they? (3) Are there any persistent outliers defying the regional trends of population development? We use a unique database that includes annual data on the population development of all German municipalities to answer these questions. Using spatial autocorrelation and hot-spot–cold-spot analysis, we identify short- and long-term population trajectories that allow us to detect both the hot and the cold spots of population development and islands of growth in otherwise shrinking regions and islands of decline in growing regions. Stable hot spots of population growth exist around Germany's three largest cities – Berlin, Hamburg and Munich – and in the rural northwest. The cold spots of population development are concentrated in rural regions of eastern Germany but also structurally weak, old industrialized rural regions around Brunswick and Kassel and in Upper Franconia, Saarland and Western Palatinate.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Anthropology,Geography, Planning and Development,Global and Planetary Change

Reference55 articles.

1. ArcGIS: Hot Spot Analysis (Getis-Ord Gi*), ArcGIS [code], https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/hot-spot-analysis.htm, last access: 31 May 2022.

2. ArcGIS: Cluster and Outlier Analysis (Anselin Local Moran's I), ArcGIS [code], https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/cluster-and-outlier-analysis-anselin-local-moran-s.htm, last access: 31 May 2022.

3. BKG: Municiplaity boundaries, Shape files, https://gdz.bkg.bund.de/index.php/default/digitale-geodaten/verwaltungsgebiete.html?___store=default (last access: 28 June 2021), 2020.

4. Born, K. M.: Ländliche Räume in Deutschland: Differenzierungen, Entwicklungspfade und -brüche, Geogr. Rundsch., 63, 4–10, 2011.

5. Brunet, R.: Lignes de force de l'espace Européen, Mappemonde, 66, 14–19, 2002.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction-based variable selection for component-wise gradient boosting;The International Journal of Biostatistics;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3