Retrieval algorithm for densities of mesospheric and lower thermospheric metal atom and ion species from satellite-borne limb emission signals

Author:

Langowski M.ORCID,Sinnhuber M.ORCID,Aikin A. C.,von Savigny C.,Burrows J. P.ORCID

Abstract

Abstract. Meteoroids bombard Earth's atmosphere during its orbit around the Sun, depositing a highly varying and significant amount of matter into the thermosphere and mesosphere. The strength of the material source needs to be characterized and its impact on atmospheric chemistry assessed. In this study an algorithm for the retrieval of metal atom and ion number densities for a two-dimensional (latitude, altitude) grid is described and explained. Dayglow emission spectra of the mesosphere and lower thermosphere are used, which are obtained by passive satellite remote sensing with the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument on board Envisat. The limb scans cover the tangent altitude range from 50 to 150 km. Metal atoms and ions are strong emitters in this region and form sharply peaked layers with a FWHM (full width at half maximum) of several 10 km in the mesosphere and lower thermosphere measuring peak altitudes between 90 to 110 km. The emission signal is first separated from the background signal, arising from Rayleigh and Raman scattering of solar radiation by air molecules. A forward radiative transfer model calculating the slant column density (SCD) from a given vertical distribution was developed. This nonlinear model is inverted in an iterative procedure to yield the vertical profiles for the emitting species. Several constraints are applied to the solution for numerical stability reasons and to get physically reasonable solutions. The algorithm is applied to SCIAMACHY limb-emission observations for the retrieval of Mg and Mg+ using emission signatures at 285.2 and 279.6/280.4 nm, respectively. Results are presented for these three lines as well as error estimations and sensitivity tests on different constraint strength and different separation approaches for the background signal.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3