Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: validation

Author:

Su W.,Corbett J.,Eitzen Z.,Liang L.

Abstract

Abstract. Radiative fluxes at the top of the atmosphere (TOA) from the Clouds and the Earth's Radiant Energy System (CERES) instrument are fundamental variables for understanding the Earth's energy balance and how it changes with time. TOA radiative fluxes are derived from the CERES radiance measurements using empirical angular distribution models (ADMs). This paper evaluates the accuracy of CERES TOA fluxes using direct integration and flux consistency tests. Direct integration tests show that the overall bias in regional monthly mean TOA shortwave (SW) flux is less than 0.2 Wm−2 and the RMSE is less than 1.1 Wm−2. The bias and RMSE are very similar between Terra and Aqua. The bias in regional monthly mean TOA LW fluxes is less than 0.5 Wm−2 and the RMSE is less than 0.8 Wm−2 for both Terra and Aqua. The accuracy of the TOA instantaneous flux is assessed by performing tests using fluxes inverted from nadir- and oblique-viewing angles using CERES along-track observations and temporally and spatially matched MODIS observations, and using fluxes inverted from multi-angle MISR observations. The averaged TOA instantaneous SW flux uncertainties from these two tests are about 2.3 % (1.9 Wm−2) over clear ocean, 1.6 % (4.5 Wm−2) over clear land, and 2.0 % (6.0 Wm−2) over clear snow/ice; and are about 3.3 % (9.0 Wm−2), 2.7 % (8.4 Wm−2), and 3.7 % (9.9 Wm−2) over ocean, land, and snow/ice under all-sky conditions. The TOA SW flux uncertainties are generally larger for thin broken clouds than for moderate and thick overcast clouds. The TOA instantaneous daytime LW flux uncertainties derived from the CERES-MODIS test are 0.5 % (1.5 Wm−2), 0.8 % (2.4 Wm−2), and 0.7 % (1.3 Wm−2) over clear ocean, land, and snow/ice; and are about 1.5 % (3.5 Wm−2), 1.0 % (2.9 Wm−2), and 1.1 % (2.1 Wm−2) over ocean, land, and snow/ice under all-sky conditions. The TOA instantaneous nighttime LW flux uncertainties are about 0.5–1 % (< 2.0 Wm−2) for all surface types. Flux uncertainties caused by errors in scene identification are also assessed by using the collocated CALIPSO, CloudSat, CERES and MODIS data product. Errors in scene identification tend to underestimate TOA SW flux by about 0.6 Wm−2 and overestimate TOA daytime (nighttime) LW flux by 0.4 (0.2) Wm−2 when all CERES viewing angles are considered.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3