Open weather and climate science in the digital era

Author:

de Vos Martine G.,Hazeleger Wilco,Bari DrissORCID,Behrens Jörg,Bendoukha SofianeORCID,Garcia-Marti Irene,van Haren Ronald,Haupt Sue EllenORCID,Hut RolfORCID,Jansson Fredrik,Mueller Andreas,Neilley Peter,van den Oord GijsORCID,Pelupessy IntiORCID,Ruti Paolo,Schultz Martin G.ORCID,Walton JeremyORCID

Abstract

Abstract. The need for open science has been recognized by the communities of meteorology and climate science. While these domains are mature in terms of applying digital technologies, the implementation of open science methodologies is less advanced. In a session on “Weather and Climate Science in the Digital Era” at the 14th IEEE International eScience Conference domain specialists and data and computer scientists discussed the road towards open weather and climate science. Roughly 80 % of the studies presented in the conference session showed the added value of open data and software. These studies included open datasets from disparate sources in their analyses or developed tools and approaches that were made openly available to the research community. Furthermore, shared software is a prerequisite for the studies which presented systems like a model coupling framework or digital collaboration platform. Although these studies showed that sharing code and data is important, the consensus among the participants was that this is not sufficient to achieve open weather and climate science and that there are important issues to address. At the level of technology, the application of the findable, accessible, interoperable, and reusable (FAIR) principles to many datasets used in weather and climate science remains a challenge. This may be due to scalability (in the case of high-resolution climate model data, for example), legal barriers such as those encountered in using weather forecast data, or issues with heterogeneity (for example, when trying to make use of citizen data). In addition, the complexity of current software platforms often limits collaboration between researchers and the optimal use of open science tools and methods. The main challenges we observed, however, were non-technical and impact the practice of science as a whole. There is a need for new roles and responsibilities in the scientific process. People working at the interface of science and digital technology – e.g., data stewards and research software engineers – should collaborate with domain researchers to ensure the optimal use of open science tools and methods. In order to remove legal boundaries on sharing data, non-academic parties such as meteorological institutes should be allowed to act as trusted agents. Besides the creation of these new roles, novel policies regarding open weather and climate science should be developed in an inclusive way in order to engage all stakeholders. Although there is an ongoing debate on open science in the community, the individual aspects are usually discussed in isolation. Our approach in this paper takes the discourse further by focusing on “open science in weather and climate research” as a whole. We consider all aspects of open science and discuss the challenges and opportunities of recent open science developments in data, software, and hardware. We have compiled these into a list of concrete recommendations that could bring us closer to open weather and climate science. We acknowledge that the development of open weather and climate science requires effort to change, but the benefits are large. We have observed these benefits directly in the studies presented in the conference and believe that it leads to much faster progress in understanding our complex world.

Funder

National Center for Atmospheric Research

Publisher

Copernicus GmbH

Reference72 articles.

1. AARNet: Annual Report/2018 Data Connector for the Future, Tech. Rep., Australia's Academic and Research Network, Chatswood, Australia, 2018. a

2. Adadi, A. and Berrada, M.: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI), IEEE Access, 6, 52138–52160, https://doi.org/10.1109/ACCESS.2018.2870052, 2018. a

3. Akhmerov, A., Cruz, M., Drost, N., Hof, C., Knapen, T., Kuzak, M., Martinez-Ortiz, C., Turkyilmaz-van der Velden, Y., and Van Werkhoven, B.: Raising the Profile of Research Software: Recommendations for Funding Agencies and Research Institutions, Tech. Rep., Netherlands eScience Center, Amsterdam, the Netherlands, Zenodo, https://doi.org/10.5281/zenodo.3378572, 2019. a

4. Baker, M.: Is there a reproducibility crisis? A Nature survey lifts the lid on how researchers view the crisis rocking science and what they think will help, Nature, 533, 353–366, 2016. a

5. Bari, D.: Visibility Prediction based on kilometric NWP Model Outputs using Machine-learning Regression, in: IEEE 14th International Conference on e-Science, p. 278, https://doi.org/10.1109/eScience.2018.00048, 2018. a, b, c

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3