When geoscience meets generative AI and large language models: Foundations, trends, and future challenges

Author:

Hadid Abdenour1ORCID,Chakraborty Tanujit2,Busby Daniel3

Affiliation:

1. Sorbonne Center for Artificial Intelligence Sorbonne University Abu Dhabi Abu Dhabi UAE

2. Department of Science and Engineering Sorbonne University Abu Dhabi Abu Dhabi UAE

3. TotalEnergies PAU Pau France

Abstract

AbstractGenerative Artificial Intelligence (GAI) represents an emerging field that promises the creation of synthetic data and outputs in different modalities. GAI has recently shown impressive results across a large spectrum of applications ranging from biology, medicine, education, legislation, computer science, and finance. As one strives for enhanced safety, efficiency, and sustainability, generative AI indeed emerges as a key differentiator and promises a paradigm shift in the field. This article explores the potential applications of generative AI and large language models in geoscience. The recent developments in the field of machine learning and deep learning have enabled the generative model's utility for tackling diverse prediction problems, simulation, and multi‐criteria decision‐making challenges related to geoscience and Earth system dynamics. This survey discusses several GAI models that have been used in geoscience comprising generative adversarial networks (GANs), physics‐informed neural networks (PINNs), and generative pre‐trained transformer (GPT)‐based structures. These tools have helped the geoscience community in several applications, including (but not limited to) data generation/augmentation, super‐resolution, panchromatic sharpening, haze removal, restoration, and land surface changing. Some challenges still remain, such as ensuring physical interpretation, nefarious use cases, and trustworthiness. Beyond that, GAI models show promises to the geoscience community, especially with the support to climate change, urban science, atmospheric science, marine science, and planetary science through their extraordinary ability to data‐driven modelling and uncertainty quantification.

Publisher

Wiley

Reference130 articles.

1. Modeling Urbanization Patterns with Generative Adversarial Networks

2. Evaluating the Performance of ChatGPT in Ophthalmology

3. Araci D.(2019).Finbert: Financial sentiment analysis with pre‐trained language models.arXiv preprint arXiv:1908.10063.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3