Insights into the interaction of a shale with CO2

Author:

Stavropoulou EleniORCID,Laloui Lyesse

Abstract

Abstract. Caprock formations, such as shales, play a key role in safe underground CO2 storage since they serve as a hydromechanical barrier that prevents migration of the injected CO2 to the surface. While their hydromechanical response is important to ensure their sealing capacity, interaction with the injected CO2 involves additional thermo–hydro–chemo–mechanical (THCM) phenomena that may threaten the long-term integrity of the caprock. The low-transport properties of shales make them a suitable caprock material, but at the same time challenging to study due to the very long timescales (months/years) that are required for the various THCM processes to manifest. In this work, the long-term multiphysical interaction of the Opalinus Clay shale with liquid and supercritical CO2 is studied in 3D with live X-ray tomography. Three-dimensional analysis reveals the localised response of the coupled THCM processes that is often indistinguishable with conventional lab testing protocols. To improve spatial and temporal resolution while applying field-representative pressure and temperature conditions, small-sized samples are studied. Long-term injection of liquid CO2 resulted in significant fissuring of calcite-rich zones that were for the first time visualised and quantified from the X-ray images. Additionally, a re-arrangement of the pre-existing micro-fissures in the clay matrix was observed. The volumetric response during direct exposure of an Opalinus Clay sample to supercritical CO2 revealed an initial swelling at pre-fissured zones and initiation of new micro-fissures at areas of direct contact with the anhydrous CO2 due to pore water evaporation. Advanced 3D image analysis showed an increasing CO2 uptake in the caprock material with time, suggesting potential CO2 trapping in the material.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3