Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors

Author:

Barcikowska Monika J.,Kapnick Sarah B.ORCID,Krishnamurty Lakshmi,Russo Simone,Cherchi AnnalisaORCID,Folland Chris K.ORCID

Abstract

Abstract. The realistic simulation of the summer Mediterranean climate requires not only refined spatial scales, but also an adequate representation of land-atmosphere interactions and teleconnections. Addressing all of these issues remains a challenge for most of the CMIP3/CMIP5 generation models. In this study we analyze high-resolution (~0.5° lat x lon) RCP8.5 future projections of the Geophysical Fluid Dynamics Laboratory CM2.5 model with a new incorporated land model (LM3). The simulated regional future changes suggest pronounced warming and drying over most parts of the Mediterranean. However the changes are distinctively less radical when compared with the CMIP5 multimodel ensemble. Moreover, changes over the Southeast (off the coast area of the Balkans) and Central Europe indicate not only a very modest warming, compared to the CMIP5 projections, but also wetting tendencies. The difference of CM2.5 projections of future changes over previous-generation models highlights the importance of a) a correctly projected magnitude of changes of the North Atlantic Oscillation and its regional impacts, which have the capacity to partly offset the anthropogenic warming and drying over the western and central Mediterranean; b) a refined representation of land surface-atmospheric interactions, which are a governing factor for thermal- and hydro-climate over Central and Southeastern Europe. The CM2.5 projections also indicate a maximum of warming (Levant) and drying (Asia Minor) over the eastern Mediterranean. The changes derived in this region indicate a decreasing influence of atmospheric dynamics in maintaining the regional temperature and precipitation balance and instead an increasing influence of local surface temperature on the local surface atmospheric circulation.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3