Climate change over the Mediterranean and current destruction of marine ecosystem

Author:

Kim Go-Un,Seo Kyong-Hwan,Chen Deliang

Abstract

AbstractThe Mediterranean is one of the most vulnerable regions to climate change and its summer climate is known to be affected by the South Asian summer monsoon (SASM) through the monsoon–desert teleconnection. In future, rainfall is expected to increase not only over the SASM area but also over the East Asian summer monsoon (EASM) and equatorial Atlantic regions. Here we show that the remote forcing regions affect the Mediterranean climate in the future. A subset of CMIP5 climate simulations exhibits an increase in the descending motion over the Western Mediterranean in the future. This strengthened subsidence comes from the SASM, EASM, and Atlantic forcings: the SASM and EASM heating induces the Gill-type Rossby wave response, and the Atlantic forcing causes the northeastward wave energy propagation. The sea surface temperature change over the Western Mediterranean is consistent with the subsidence change both in the future and in the recent decades. The chlorophyll-a concentration and fisheries landings have decreased in the recent period along with sea surface temperature warming. Our results suggest that special attention is required to conserve the marine ecosystem in the Mediterranean as climate warms.

Funder

National Research Foundation of Korea

KMA Research and Development Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference55 articles.

1. Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 33, 1–4 (2006).

2. Lionello, P. The Climate of the Mediterranean Region: From the Past to the Future. The Climate of the Mediterranean Region (Elsevier, 2012), https://doi.org/10.1016/b978-0-12-416042-2.00011-2.

3. Christensen, J. H. et al. Climate phenomena and their relevance for future regional climate change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker T.F. et al. (eds)]. Cambridge University Press, Cambridge, United Kingdom, 1217–1308 (2013).

4. Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 2015–2018 (2018).

5. Schar, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature 427, 1–4 (2004).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3