Physical aerosol properties and their relation to air mass origin at Monte Cimone (Italy) during the first MINATROC campaign

Author:

Van Dingenen R.,Putaud J.-P.,Martins-Dos Santos S.,Raes F.

Abstract

Abstract. Aerosol physical properties were measured at the Monte Cimone Observatory (Italy) from 1 June till 6 July 2000. The measurement site is located in the transition zone between the continental boundary layer and the free troposphere (FT), at the border between the Mediterranean area and Central Europe, and is exposed to a variety of air masses. Sub-μm number size distributions, aerosol hygroscopicity near 90% RH, refractory size distribution at 270°C and equivalent black carbon mass were continuously measured. Number size distributions and hygroscopic properties indicate that the site is exposed to aged continental air masses, however during daytime it is also affected by upslope winds. The mixing of this transported polluted boundary layer air masses with relatively clean FT air leads to frequent nucleation events around local noon. Night-time size distributions, including fine and coarse fractions for each air mass episode, have been parameterized by a 3-modal lognormal distribution. Number and volume concentrations in the sub-μm modes are strongly affected by the air mass origin, with highest levels in NW-European air masses, versus very clean, free tropospheric air coming from the N-European sector. During a brief but distinct dust episode, the coarse mode is clearly enhanced. The observed hygroscopic behavior of the aerosol is consistent with the chemical composition described by Putaud et al. (2004), but no closure between known chemical composition and measured hygroscopicity could be made because the hygroscopic properties of the water-soluble organic matter (WSOM) are not known. The data suggest that WSOM is slightly-to-moderately hygroscopic (hygroscopic growth factor GF at 90% relative humidity between 1.05 and 1.51), and that this property may well depend on the air mass origin and history. External mixing of aerosol particles is observed in all air masses through the occurrence of two hygroscopicity modes (average GF of 1.22 and 1.37, respectively). However, the presence of "less" hygroscopic particles has mostly such a low occurrence rate that the average growth factor distribution for each air mass sector actually appears as a single mode. This is not the case for the dust episode, where the external mixing between less hygroscopic and more hygroscopic particles is very prominent, and indicating clearly the occurrence of a dust accumulation mode, extending down to 50 nm particles, along with an anthropogenic pollution mode. The presented physical measurements finally allow us to provide a partitioning of the sub-μm aerosol in four non-overlapping fractions (soluble/volatile, non-soluble/volatile, refractory/non-black carbon, black carbon) which can be associated with separate groups of chemical compounds determined with chemical-analytical techniques (ions, non-water soluble organic matter, dust, elemental carbon). All air masses except the free-tropospheric N-European and Dust episodes show a similar composition within the uncertainty of the data (53%, 37%, 5% and 5% respectively for the four defined fractions). Compared to these sectors, the dust episode shows a clearly enhanced refractory-non-BC fraction (17%), attributed to dust in the accumulation mode, whereas for the very clean N-EUR sector, the total refractory fraction is 25%, of which 13% non-BC and 12% BC.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aerosol Hygroscopicity;Atmospheric Chemistry in the Mediterranean Region;2022

2. Aerosol Size Distribution;Atmospheric Chemistry in the Mediterranean Region;2022

3. Dust Atmospheric Transport Over Long Distances;Reference Module in Earth Systems and Environmental Sciences;2021

4. Free tropospheric aerosols at the Mt. Bachelor Observatory: more oxidized and higher sulfate content compared to boundary layer aerosols;Atmospheric Chemistry and Physics;2019-02-07

5. Processes controlling the seasonal variations in <sup>210</sup>Pb and <sup>7</sup>Be at the Mt. Cimone WMO-GAW global station, Italy: a model analysis;Atmospheric Chemistry and Physics;2017-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3