Processes controlling the seasonal variations in <sup>210</sup>Pb and <sup>7</sup>Be at the Mt. Cimone WMO-GAW global station, Italy: a model analysis
-
Published:2017-01-24
Issue:2
Volume:17
Page:1061-1080
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Brattich ErikaORCID, Liu HongyuORCID, Tositti LauraORCID, Considine David B., Crawford James H.
Abstract
Abstract. We apply the Global Modeling Initiative (GMI) chemistry and transport model driven by NASA's MERRA assimilated meteorological data to simulate the seasonal variations in two radionuclide aerosol tracers (terrigenous 210Pb and cosmogenic 7Be) at the WMO-GAW station of Mt. Cimone (44°12′ N, 10°42′ E; 2165 m a.s.l.; Italy), which is representative of free-tropospheric conditions most of the year, during 2005 with an aim to understand the roles of transport and precipitation scavenging processes in controlling their seasonality. The total precipitation field in the MERRA data set is evaluated with the Global Precipitation Climatology Project (GPCP) observations, and generally good agreement is found. The model reproduces reasonably the observed seasonal pattern of 210Pb concentrations, characterized by a wintertime minimum due to lower 222Rn emissions and weaker uplift from the boundary layer and summertime maxima resulting from strong convection over the continent. The observed seasonal behavior of 7Be concentrations shows a winter minimum, a summer maximum, and a secondary spring maximum. The model captures the observed 7Be pattern in winter–spring, which is linked to the larger stratospheric influence during spring. However, the model tends to underestimate the observed 7Be concentrations in summer, partially due to the sensitivity to spatial sampling in the model. Model sensitivity experiments indicate a dominant role of precipitation scavenging (vs. dry deposition and convection) in controlling the seasonality of 210Pb and 7Be concentrations at Mt. Cimone.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference115 articles.
1. Arimoto, R., Snow, J. A., Graustein, W. C., Moody, J. L., Ray, B. J., Duce, R. A., Turekian, K. K., and Maring, H. B.: Influences of atmospheric transport pathways on radionuclide activities in aerosol particles from over the North Atlantic, J. Geophys. Res., 104, 301–321, 1999. 2. Balkanski, Y., Jacob, D. J., Gardner, G. M., Graustein, W., and Turekian, K. K.: Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb, J. Geophys. Res., 98, 20573–20586, 1993. 3. Baskaran, M.: Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review, J. Environ. Radioactiv., 102, 500–513, 2011. 4. Beer, J., McCracken, K., and von Steiger, R.: Cosmogenic radionuclides, Springer, Heidelberg, Germany, 2012. 5. Bonasoni, P., Evangelisti, F., Bonafé, U., Feldmann, H., Memmesheimer, M., Stohl, A., and Tositti, L.: Stratosphere-troposphere exchanges: case studies recorded at Mt. Cimone during VOTALP project, Phys. Chem. Earth C, 24, 443–446, 1999.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|