Macromolecular fungal ice nuclei in <i>Fusarium</i>: effects of physical and chemical processing

Author:

Kunert Anna T.ORCID,Pöhlker Mira L.,Tang Kai,Krevert Carola S.,Wieder Carsten,Speth Kai R.,Hanson Linda E.,Morris Cindy E.ORCID,Schmale III David G.,Pöschl UlrichORCID,Fröhlich-Nowoisky JanineORCID

Abstract

Abstract. Some biological particles and macromolecules are particularly efficient ice nuclei (IN), triggering ice formation at temperatures close to 0 ∘C. The impact of biological particles on cloud glaciation and the formation of precipitation is still poorly understood and constitutes a large gap in the scientific understanding of the interactions and coevolution of life and climate. Ice nucleation activity in fungi was first discovered in the cosmopolitan genus Fusarium, which is widespread in soil and plants, has been found in atmospheric aerosol and cloud water samples, and can be regarded as the best studied ice-nucleation-active (IN-active) fungus. The frequency and distribution of ice nucleation activity within Fusarium, however, remains elusive. Here, we tested more than 100 strains from 65 different Fusarium species for ice nucleation activity. In total, ∼11 % of all tested species included IN-active strains, and ∼16 % of all tested strains showed ice nucleation activity above −12 ∘C. Besides Fusarium species with known ice nucleation activity, F. armeniacum, F. begoniae, F. concentricum, and F. langsethiae were newly identified as IN-active. The cumulative number of IN per gram of mycelium for all tested Fusarium species was comparable to other biological IN like Sarocladium implicatum, Mortierella alpina, and Snomax®. Filtration experiments indicate that cell-free ice-nucleating macromolecules (INMs) from Fusarium are smaller than 100 kDa and that molecular aggregates can be formed in solution. Long-term storage and freeze–thaw cycle experiments revealed that the fungal IN in aqueous solution remain active over several months and in the course of repeated freezing and thawing. Exposure to ozone and nitrogen dioxide at atmospherically relevant concentration levels also did not affect the ice nucleation activity. Heat treatments at 40 to 98 ∘C, however, strongly reduced the observed IN concentrations, confirming earlier hypotheses that the INM in Fusarium largely consists of a proteinaceous compound. The frequency and the wide distribution of ice nucleation activity within the genus Fusarium, combined with the stability of the IN under atmospherically relevant conditions, suggest a larger implication of fungal IN on Earth’s water cycle and climate than previously assumed.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference95 articles.

1. Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., and Delort, A. M.: Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dôme: Major groups and growth abilities at low temperatures, FEMS Microbiol. Ecol., 59, 242–254, https://doi.org/10.1111/j.1574-6941.2006.00199.x, 2007. a

2. Aoki, T., O'Donnell, K., and Ichikawa, K.: Fusarium fractiflexum sp. nov. and two other species within the Gibberella fujikuroi species complex recently discovered in Japan that form aerial conidia in false heads, Mycoscience, 42, 461–478, https://doi.org/10.1007/BF02464343, 2001. a

3. Berge, O., Monteil, C. L., Bartoli, C., Chandeysson, C., Guilbaud, C., Sands, D. C., and Morris, C. E.: A User's Guide to a Data Base of the Diversity of Pseudomonas syringae and Its Application to Classifying Strains in This Phylogenetic Complex, PLoS One, 9, e105547, https://doi.org/10.1371/journal.pone.0105547, 2014. a

4. Borduas-Dedekind, N., Ossola, R., David, R. O., Boynton, L. S., Weichlinger, V., Kanji, Z. A., and McNeill, K.: Photomineralization mechanism changes the ability of dissolved organic matter to activate cloud droplets and to nucleate ice crystals, Atmos. Chem. Phys., 19, 12397–12412, https://doi.org/10.5194/acp-19-12397-2019, 2019. a

5. Budke, C. and Koop, T.: BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation, Atmos. Meas. Tech., 8, 689–703, https://doi.org/10.5194/amt-8-689-2015, 2015. a

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3