Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia

Author:

Wang Y.ORCID,Zhang Q. Q.,He K.,Zhang Q.,Chai L.

Abstract

Abstract. We use a chemical transport model to examine the change of sulfate-nitrate-ammonium (SNA) aerosols over China due to anthropogenic emission changes of their precursors (SO2, NOx and NH3) from 2000 to 2015. From 2000 to 2006, annual mean SNA concentrations increased by about 60% over China as a result of the 60% and 80% increases in SO2 and NOx emissions. During this period, sulfate is the dominant component of SNA over South China (SC) and Sichuan Basin (SCB), while nitrate and sulfate contribute equally over North China (NC). Based on emission reduction targets in the 12th (2011–2015) Five-Year Plan (FYP), China's total SO2 and NOx emissions are projected to change by −16% and +16% from 2006 to 2015, respectively. The amount of NH3 emissions in 2015 is uncertain, given the lack of sufficient information on the past and present levels of NH3 emissions in China. With no change in NH3 emissions, SNA mass concentrations in 2015 will decrease over SCB and SC compared to their 2006 levels, but increase over NC where the magnitude of nitrate increase exceeds that of sulfate reduction. This suggests that the SO2 emission reduction target set by the 12th FYP, although effective in reducing SNA over SC and SCB, will not be successful over NC, for which NOx emission control needs to be strengthened. If NH3 emissions are allowed to keep their recent growth rate and increase by +16% from 2006 to 2015, the benefit of SO2 reduction will be completely offset over all of China due to the significant increase of nitrate, demonstrating the critical role of NH3 in regulating nitrate. The effective strategy to control SNA and hence PM2.5 pollution over China should thus be based on improving understanding of current NH3 emissions and putting more emphasis on controlling NH3 emissions in the future.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3