Carbon monoxide observations from ground stations in France and Europe and long trends in the free troposphere

Author:

Chevalier A.,Gheusi F.,Attié J.-L.,Delmas R.,Zbinden R.,Athier G.,Cousin J.-M.

Abstract

Abstract. Continuous CO measurements performed at 3 high-altitude stations in France are analyzed for the first time. Data are provided by the new PAES (Pollution Atmospherique à l'Echelle Synoptique) network since 2002 for the Puy de Dôme and 2004 for the Pic du Midi and the Donon. CO measurements of 5 another European stations have been analysed to put the PAES stations in an European perspective. The January 2002–April 2005 CO mean levels of surface stations capture the stratification revealed by climatological CO profiles from the airborne observation system MOZAIC (Measurement of OZone and water vapour by Airbus In-service Aircraft). The deviation between the free tropospheric reference MOZAIC and surface data above 2000 m is less than 10% and this deviation can be explained in term of spatial variability, as evidenced by MOPITT CO retrievals at 700 hPa. This suggests that, averaged at a seasonal time scale (4 months), surface data at stations above 2000 m are representative of background CO concentration. This paper focuses then on trends since the 1980s–1990s. The comparison between old (1982–1983) and recent CO mixing ratio (2005) at the Pic du Midi leads to a 10% decrease, consistent with the continuous data series at Zugspitze (ZSP) from 1991 to 2004. This decrease was found to be mainly due to a negative trend of January–April mean levels. The decrease in CO sources over France and Europe appears to be responsible for that trend. The stable values of June–September mean levels suggest that the summertime oxidizing capacity of the atmosphere related to OH radicals is important enough to counterbalance any CO inputs into the troposphere. Our study shows a recent change in CO evolution since 2000 over Western Europe, with a slowed down decrease in CO concentration. Studying specifically the interactions between CO, CH4 and OH turns out to be needed, however, to find definitive explanations to those observations.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3