Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon concentrations at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.)
Author:
Cristofanelli P.,Fierli F.,Marinoni A.,Duchi R.,Burkhart J.,Stohl A.,Maione M.,Arduini J.,Bonasoni P.
Abstract
Abstract. This work investigates the variability of ozone (O3), carbon monoxide (CO) and equivalent black carbon (BC) concentrations at the Italian Climate Observatory "O. Vittori" (ICO-OV), part of the Mt. Cimone global GAW-WMO station (Italy). For this purpose, ICO-OV observations carried out in the period January 2007–June 2009, have been analysed and correlated with the output of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass burning (BB) and anthropogenic emissions younger than 20 days. During the investigation period, the average O3, CO and BC concentrations at ICO-OV were 54 ± 3 ppbv, 122 ± 7 ppbv and 213 ± 34 ng m−3 (mean ± expanded uncertainty with p<95%), with clear seasonal cycles characterized by summer maxima and winter minima for O3 and BC and spring maximum and summer minimum for CO. According to FLEXPART output, BB impact is maximized during the warm months from July to September but appeared to have a significant contribution to the observed tracer concentrations only during specific transport events. We characterised in detail five major events with respect to transport scales (i.e. global, regional and local), source regions and O3, CO and BC variations. For these events, very large variability of enhancement ratios O3/CO (from −0.22 to 0.71) and BC/CO (from 2.69 to 29.83 ng m−3 ppbv−1) were observed. CO related with anthropogenic emissions (COant) contributed to 17.4% of the mean CO value observed at ICO-OV, with the warm months appearing particularly affected by transport events of air-masses rich in anthropogenic pollution. The proportion of tracer variability that is described by FLEXPART COant peaked to 37% (in May–September) for CO, 19% (in May–September) for O3 and 32% (in January–April) for BC. During May–September, the analysis of the correlation among CO, O3 and BC as a function of the COant indicated that ICO-OV was influenced by air-masses rich in anthropogenic pollution transported from the regional to the global scale. On the other side, CO and O3 were negatively correlated during October–December, when FLEXPART does not show significant presence of recent anthropogenic emissions and only a few observations are characterized by enhanced BC. Such behaviour may be attributed to an ensemble of processes concurrent in enhancing O3 with low CO (upper troposphere/lower stratosphere intrusions) and O3 titration by NO in polluted air-masses along with lower photochemical activity. An intermediate situation occurs in January–April when CO and O3 were almost uncorrelated and BC enhancements were associated to relatively old (10 days) anthropogenic emissions.
Publisher
Copernicus GmbH
Reference70 articles.
1. Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. 2. Auvray, M., Bay, I.: Long-range transport to Europe: seasonal variations and implications for the European ozone budget, J. Geophys. Res., 110, D11303, https://doi.org/10.1029/2004JD005503, 2005. 3. Balis, D., Papayannis, A., Galani, E., Marenco, F., Santacesaria, V., Hamonou, E., Chazette, P., Ziomas, I., Zerefos, C.: Tropospheric LIDAR aerosol measurements and sun photometric observations at Thessaliniki, Greece, Atmos. Environ., 34, 925–932, 2000. 4. Bertschi, I. T. and Jaffe, D. A.: Long-range transport of ozone, carbon monoxide, and aerosols to the NE Pacific troposphere during the summer of 2003: observations of smoke plumes from Asian boreal fires, J. Geophys. Res., 110, D05303, https://doi.org/10.1029/2004JD005135, 2005 5. Bonasoni, P., Stohl, A., Cristofanelli, P., Calzolari, F., Colombo, T., and Evangelisti, F.: Background ozone variations at Mt. Cimone Station, Atmos. Environ., 34, 5183–5189, 2000.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|