Precise age for the Permian–Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age–depth modeling
-
Published:2017-03-30
Issue:2
Volume:8
Page:361-378
-
ISSN:1869-9529
-
Container-title:Solid Earth
-
language:en
-
Short-container-title:Solid Earth
Author:
Baresel Björn, Bucher Hugo, Brosse Morgane, Cordey Fabrice, Guodun Kuang, Schaltegger UrsORCID
Abstract
Abstract. This study is based on zircon U-Pb ages of 12 volcanic ash layers and volcanogenic sandstones from two deep water sections with conformable and continuous formational Permian–Triassic boundaries (PTBs) in the Nanpanjiang Basin (South China). Our dates of single, thermally annealed and chemically abraded zircons bracket the PTB in Dongpan and Penglaitan and provide the basis for a first proof-of-concept study utilizing a Bayesian chronology model comparing the three sections of Dongpan, Penglaitan and the Global Stratotype Section and Point (GSSP) at Meishan. Our Bayesian modeling demonstrates that the formational boundaries in Dongpan (251.939 ± 0.030 Ma), Penglaitan (251.984 ± 0.031 Ma) and Meishan (251.956 ± 0.035 Ma) are synchronous within analytical uncertainty of ∼ 40 ka. It also provides quantitative evidence that the ages of the paleontologically defined boundaries, based on conodont unitary association zones in Meishan and on macrofaunas in Dongpan, are identical and coincide with the age of the formational boundaries. The age model also confirms the extreme condensation around the PTB in Meishan, which distorts the projection of any stratigraphic points or intervals onto other more expanded sections by means of Bayesian age–depth models. Dongpan and Penglaitan possess significantly higher sediment accumulation rates and thus offer a greater potential for high-resolution studies of environmental proxies and correlations around the PTB than Meishan. This study highlights the power of high-resolution radio-isotopic ages that allow a robust intercalibration of patterns of biotic changes and fluctuating environmental proxies and will help recognizing their global, regional or local significance.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Copernicus GmbH
Subject
Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science
Reference80 articles.
1. Algeo, T. J. and Twitchett, R. J.: Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences, Geology, 38, 1023–1026, https://doi.org/10.1130/G31203.1, 2010. 2. Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomasovych, A., and Visaggi, C. C.: Phanerozoic trends in the global diversity of marine invertebrates, Science, 321, 97–100, https://doi.org/10.1126/science.1156963, 2008. 3. Baresel, B., D'Abzac, F. X., Bucher, H., and Schaltegger, U.: High-precision time-space correlation through coupled apatite and zircon tephrochronology: an example from the Permian-Triassic boundary in South China, Geology, 45, 83–86, https://doi.org/10.1130/g38181.1, 2016. 4. Benton, M. J.: The origins of modern biodiversity on land, Philos. T. Roy. Soc. Lond. B, 365, 3667–3679, https://doi.org/10.1098/rstb.2010.0269, 2010. 5. Bowring, J. F., McLean, N. M., and Bowring, S. A.: Engineering cyber infrastructure for U-Pb geochronology: tripoli and U-Pb_Redux, Geochem. Geophys. Geosyst., 12, Q0AA19, https://doi.org/10.1029/2010gc003479, 2011.
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|