Methane emissions associated with the conversion of marshland to cropland and climate change on the Sanjiang Plain of northeast China from 1950 to 2100

Author:

Li T.,Huang Y.,Zhang W.,Yu Y.-Q.

Abstract

Abstract. Wetland loss and climate change are known to alter regional and global methane (CH4) budgets. Over the last six decades, an extensive area of marshland has been converted to cropland on the Sanjiang Plain in northeast China, and a significant increase in air temperature has also been observed there, while the impacts on regional CH4 budgets remain uncertain. Through model simulation, we estimated the changes in CH4 emissions associated with the conversion of marshland to cropland and climate change in this area. Model simulations indicated a significant reduction of 1.1 Tg yr−1 (0.7–1.8 Tg yr−1) from the 1950s to the 2000s in regional CH4 emissions. The cumulative reduction of CH4 from 1960 to 2009 was estimated to be ~36 Tg (24–57 Tg) relative to the 1950s, and marshland conversion and the climate contributed 86% and 14% of this change, respectively. Interannual variation in precipitation (linear trend with P > 0.2) contributed to yearly fluctuations in CH4 emissions, but the relatively lower amount of precipitation over the period 1960–2009 (47 mm yr−1 lower on average than in the 1950s) contributed ~91% of the reduction in the area-weighted CH4 flux. Global warming at a rate of 0.3 ° per decade (P < 0.001) has increased CH4 emissions significantly since the 1990s. Relative to the mean of the 1950s, the warming-induced increase in the CH4 flux has averaged 19 kg ha−1 yr−1 over the last two decades. In the RCP (Representative Concentration Pathway) 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 scenarios of the fifth IPCC assessment report (AR5), the CH4 fluxes are predicted to increase by 36%, 52%, 78% and 95%, respectively, by the 2080s compared to 1961–1990 in response to climate warming and wetting.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference84 articles.

1. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop water requirements, in: Irrigation and Drainage Paper No. 56, FAO, Rome, Italy, available at: http://www.fao.org/docrep/X0490E/X0490E00.htm, 1998.

2. An, S. Q., Li, H. B., Guan, B. H., Zhou, C. F., Wang, Z. S., Deng, Z. F., Zhi, Y. B., Liu, Y. L., Xu, C., Fang, S. B., Jiang, J. H., and Li, H. L.: China's natural wetlands: past problems, current status, and future challenges, Ambio, 36, 335–342, 2007.

3. Beldring, S., Engen-Skaugen, T., Førland, E. J., and Roald, L. A.: Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites, Tellus A, 60, 439–450, 2008.

4. Bernie, D.: Temperature implications from the IPCC 5th assessment Representative Concentration Pathways (RCP), Work stream 2, Report 11 of the AVOID programme (AV/WS2/D1/R11), available at: www.avoid.uk.net, 2010.

5. Bertness, M. D.: Peat accumulation and the success of marsh plants, Ecology, 69, 703–713, 1988.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3