Relationship between Carbon Sequestration and Soil Physicochemical Parameters in Northern Campeche, Mexico

Author:

Chan-Keb Carlos A.1ORCID,Agraz-Hernández Claudia M.2ORCID,Pérez-Balan Román A.1,Mas-Qui Oscar O.1,Osti-Sáenz Juan2,Reyes-Castellanos Jordán E.2

Affiliation:

1. Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Campeche, San Francisco de Campeche 24085, Mexico

2. Instituto EPOMEX, Universidad Autónoma de Campeche, San Francisco de Campeche 24029, Mexico

Abstract

For decades, mangroves have been exposed to various pressures, resulting in the loss of large swathes around the world. For this reason, ecological restoration actions are presented as alternatives to recover mangroves that can restore their ecosystem services while helping to mitigate climate change’s effects. Mangroves are crucial, as they capture and sequester carbon in biomass and soil, highlighting their importance in environmental conservation and in the fight against climate change. In this research, the amount of carbon sequestered in a mangrove area restored eight years ago and its relationship with soil physicochemical parameters were evaluated and compared to those of a reference forest. Soil cores were collected at a depth of 30 cm from both sites, and in situ measurements of physical chemistry were made at different depths. In addition, soil salinity, bulk density, and carbon concentration were determined. The results revealed a similar amount of carbon sequestered both in the reference forest (BR) (470.17 ± 67.14 Mg C/ha) and in the restoration area (RA) (444.53 ± 86.11 Mg C/ha) (p > 0.05). A direct relationship was observed between carbon sequestration and soil depth. In the case of the RA, a direct relationship was found between carbon sequestration and soil salinity. In conclusion, the results of this study indicate that the behavior of carbon sequestration in soil is determined by the physicochemical conditions in both the BR and the RA, as well as by the presence or absence of vegetation.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3