Attributing trends in extremely hot days to changes in atmospheric dynamics

Author:

García-Valero J. A.,Montávez J. P.ORCID,Gómez-Navarro J. J.ORCID,Jiménez-Guerrero P.ORCID

Abstract

Abstract. This paper presents a method for attributing regional trends in the frequency of extremely hot days (EHDs) to changes in the frequency of the atmospheric patterns that characterize such extraordinary events. The study is applied to mainland Spain and the Balearic Islands for the extended summers of the period 1958–2008, where significant and positive trends in maximum temperature (Tx) have been reported during the second half of the past century. First, the study area was split into eight regions attending to their different temporal variability of the daily Tx series obtained from the Spain02 gridded data set using a clustering procedure. Second, the large-scale atmospheric situations causing EHDs are defined by circulation types (CTs). The obtainment of the CTs differs from the majority of CT classifications proposed in the literature. It is based on regional series and on a previous characterization of the main atmospheric situations obtained using only some days classified as extremes in the different regions. Three different atmospheric fields (SLP, T850, and Z500) from ECMWF reanalysis and analysis data and combinations of them (SLP–T850, SLP–Z500, and T850–Z500) are used to produce six different CT classifications. Subsequently, links between EHD occurrence in the different regions and CT for all days have been established. Finally, a simple model to relate the trends in EHDs for each region to the changes in the CT frequency appearance has been formulated. Most regions present positive and significant trends in the occurrence of EHDs. The CT classifications using two variables perform better. In particular, SLP–T850 is the best for characterizing the atmospheric situations leading to EHD occurrences for most of the regions. Only a small number of CTs have significant trends in their frequency and are associated with high efficiency causing EHD occurrences in most regions simultaneously, especially in the northern and central regions. Attribution results show that changes in circulation can only explain some part of the regional EHD trends. The percentage of the trend attributable to changes in atmospheric dynamics varies from 15 to 50 %, depends on the region and is sensitive to the selected large-scale variables.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3