Statistical modelling of rainfall-induced shallow landsliding using static predictors and numerical weather predictions: preliminary results

Author:

Capecchi V.ORCID,Perna M.,Crisci A.

Abstract

Abstract. Our study is aimed at estimating the added value provided by Numerical Weather Prediction (NWP) data for the modelling and prediction of rainfall-induced shallow landslides. We implemented a quantitative indirect statistical modelling of such phenomena by using, as input predictors, both geomorphological, geological, climatological information and numerical data obtained by running a limited-area weather model. Two standard statistical techniques are used to combine the predictor variables: a generalized linear model and Breiman's random forests. We tested these models for two rainfall events that occurred in 2011 and 2013 in Tuscany region (central Italy). Modelling results are compared with field data and the forecasting skill is evaluated by mean of sensitivity–specificity receiver operating characteristic (ROC) analysis. In the 2011 rainfall event, the random forests technique performs slightly better than generalized linear model with area under the ROC curve (AUC) values around 0.91 vs. 0.84. In the 2013 rainfall event, both models provide AUC values around 0.7. Using the variable importance output provided by the random forests algorithm, we assess the added value carried by numerical weather forecast. The main results are as follows: (i) for the rainfall event that occurred in 2011 most of the NWP data, and in particular hourly rainfall intensities, are classified as "important" and (ii) for the rainfall event that occurred in 2013 only NWP soil moisture data in the first centimetres below ground is found to be relevant for landslide assessment. In the discussions we argue how these results are connected to the type of precipitation observed in the two events.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3