A novel dynamic rockfall susceptibility model including precipitation, temperature and snowmelt predictors: a case study in Aosta Valley (northern Italy)

Author:

Bajni GretaORCID,Camera Corrado A. S.ORCID,Apuani TizianaORCID

Abstract

AbstractThe overarching goal of the study was the development of a potentially dynamic rockfall susceptibility model by including climate predictors. The work is based on previously defined critical thresholds relating three climate indices — effective water inputs (EWI), wet-dry cycles (WD) and freeze–thaw cycles (FT) — and rockfall occurrence. The pilot area is located in the Aosta Valley region (Italian Western Alps). The susceptibility model settings were optimized through a stepwise procedure, carried out by means of generalized additive models (GAM). Predictors included topographic, climatic and additional snow-related variables. As climatic predictors, the mean annual threshold exceedance frequency was calculated for each index. All models were developed including an automatic penalization of statistically non-significant variables (i.e. shrinkage). The initial susceptibility model was set without considering potential inventory bias. Secondly, a “visibility mask” was produced to limit the modelling domain according to the rockfall event census procedures. Thirdly, GAMs functional relationships were analysed to verify the physical plausibility of predictors. Finally, to reduce concurvity, a principal component analysis (PCA) including climatic and snow-related predictors was carried out. Key findings were as follows: (i) ignoring inventory bias led to excellent model performance but to physically implausible outputs; (ii) the selection of non-rockfall points inside a “visibility mask” is effective in managing inventory bias influence on outputs; (iii) the inclusion of climate predictors resulted in an improvement of the physical interpretability of the associated models and susceptibility maps, being EWI, WD and the maximum cumulated snow melting the most important physically plausible climate predictors; (iv) the PCA strategy can efficiently reduce model concurvity.

Funder

Università degli Studi di Milano

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3