Seasonal climate influences on the timing of the Australian monsoon onset

Author:

Lisonbee Joel,Ribbe JoachimORCID

Abstract

Abstract. The timing of the first monsoon burst of the season, or the monsoon onset, can be a critical piece of information for agriculture, fire management, water management, and emergency response in monsoon regions. Why do some monsoon seasons start earlier or later than others? Previous research has investigated the impact of climate influences such as the El Niño–Southern Oscillation (ENSO) on monsoon variability, but most studies have considered only the impact on rainfall and not the timing of the onset. While this question could be applied to any monsoon system, this research presented in this paper has focused on the Australian monsoon. Even with the wealth of research available on the variability of the Australian monsoon season, the timing of the monsoon onset is one aspect of seasonal variability that still lacks skilful seasonal prediction. To help us better understand the influence of large-scale climate drivers on monsoon onset timing, we recreated 11 previously published Australian monsoon onset datasets and extended these to all cover the same period from the 1950/1951 through the 2020/2021 Australian wet seasons. The extended datasets were then tested for correlations with several standard climate indices to identify which climate drivers could be used as predictors for monsoon onset timing. The results show that many of the relationships between monsoon onset dates and ENSO that were previously published are not as strong when considering the extended datasets. Only a strong La Niña pattern usually has an impact on monsoon onset timing, while ENSO-neutral and El Niño patterns lacked a similar relationship. Detrended Indian Ocean Dipole (IOD) data showed a weak relationship with monsoon onset dates, but when the trend in the IOD data is retained, the relationship with onset dates diminishes. Other patterns of climate variability showed little relationship with Australian monsoon onset dates. Since ENSO is a tropical climate process with global impacts, it is prudent to further re-examine its influences in other monsoon regions too, with the aim to evaluate and improve previously established prediction methodologies.

Publisher

Copernicus GmbH

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3