Associations between Australian climate drivers and extreme weekly fire danger

Author:

Taylor Rachel,Marshall Andrew G.,Crimp Steven,Cary Geoffrey J.,Harris Sarah,Sauvage Samuel

Abstract

Aims We investigate the associations between major Australian climate drivers and extreme weekly fire danger throughout the year. Methods We use a composite-based approach, relating the probability of top-decile observed potential fire intensity to the positive and negative modes of the El Niño Southern Oscillation, Indian Ocean Dipole, Madden–Julian Oscillation, Southern Annular Mode, split-flow blocking and Subtropical Ridge Tasman Highs, both concurrently and at a variety of lag times. Key results The chance of extreme fire danger increases over broad regions of the continent in response to El Niño and positive Indian Ocean Dipole events, the negative mode of the Southern Annular Mode, split-flow Blocking Index and Subtropical Ridge Tasman High, and Madden–Julian Oscillation phases 5, 6, 2 and 8 in Austral summer, autumn, winter and spring respectively. These relationships exist not only concurrently, but also when a climate event occurs up to 6 months ahead of the season of interest. Conclusions These findings highlight the importance of considering the influence of diverse climate drivers, at a range of temporal lag periods, in understanding and predicting extreme fire danger. Implications The results of this study may aid in the development of effective fire management strategies and decision-making processes to mitigate the impacts of fire events in Australia.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Reference81 articles.

1. AFAC (2021) Seasonal Bushfire Outlook Summer 2021. Available at

2. AFAC (2022) Seasonal Bushfire Outlook Summer 2022. Available at

3. Australian Bureau of Meteorology (2016) Indian Ocean influences on Australian climate. Available at

4. Progress towards a new national seasonal fire outlook.;The Australian Journal of Emergency Management,2022

5. Benger N, Gregory P, Fox-Hughes P (2023) Interpretation of seasonal fire outlooks. Available at

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3