Global distribution of vertical wavenumber spectra in the lower stratosphere observed using high-vertical-resolution temperature profiles from COSMIC GPS radio occultation
-
Published:2016-02-10
Issue:2
Volume:34
Page:203-213
-
ISSN:1432-0576
-
Container-title:Annales Geophysicae
-
language:en
-
Short-container-title:Ann. Geophys.
Abstract
Abstract. We retrieved temperature (T) profiles with a high vertical resolution using the full spectrum inversion (FSI) method from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation (GPS-RO) data from January 2007 to December 2009. We studied the characteristics of temperature perturbations in the stratosphere at 20–27 km altitude. This height range does not include a sharp jump in the background Brunt–Väisälä frequency squared (N2) near the tropopause, and it was reasonably stable regardless of season and latitude. We analyzed the vertical wavenumber spectra of gravity waves (GWs) with vertical wavelengths ranging from 0.5 to 3.5 km, and we integrated the (total) potential energy EpT. Another integration of the spectra from 0.5 to 1.75 km was defined as EpS for short vertical wavelength GWs, which was not studied with the conventional geometrical optics (GO) retrievals. We also estimated the logarithmic spectral slope (p) for the saturated portion of spectra with a linear regression fitting from 0.5 to 1.75 km.Latitude and time variations in the spectral parameters were investigated in two longitudinal regions: (a) 90–150° E, where the topography was more complicated, and (b) 170–230° E, which is dominated by oceans. We compared EpT, EpS, and p, with the mean zonal winds (U) and outgoing longwave radiation (OLR). We also show a ratio of EpS to EpT and discuss the generation source of EpS. EpT and p clearly showed an annual cycle, with their maximum values in winter at 30–50° N in region (a), and 50–70° N in region (b), which was related to the topography. At 30–50° N in region (b), EpT and p exhibited some irregular variations in addition to an annual cycle. In the Southern Hemisphere, we also found an annual oscillation in EpT and p, but it showed a time lag of about 2 months relative to U. Characteristics of EpTand p in the tropical region seem to be related to convective activity. The ratio of EpT to the theoretical model value, assuming saturated GWs, became larger in the equatorial region and over mountainous regions.
Publisher
Copernicus GmbH
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Reference51 articles.
1. Alexander, M. J. and Holton, J. R.: A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves, J. Atmos. Sci., 54, 408–419, 1997. 2. Alexander, M. J., Tsuda, T., and Vincent, R. A.: Latitudinal variations observed in GWs with short λs, J. Atmos. Sci., 59, 1394–1404, 2002. 3. Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T., Sigmond, M., Vincent, R., and Watanabe, S.: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observation and models, Q. J. Roy. Meteor. Soc., 136, 1103–1124, https://doi.org/10.1002/qj.637, 2010. 4. Alexander, S. P., Tsuda, T., and Kawatani, Y.: COSMIC GPS observations of northern hemisphere winter stratospheric GWs and comparisons with an atmospheric general circulation model, Geophys. Res. Lett., 35, L10808, https://doi.org/10.1029/2008GL033174, 2008a. 5. Alexander, S. P., Tsuda, T., Kawatani, Y., and Takahashi, M.: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere region: 1. COSMIC observations of wave mean flow interactions, J. Geophys. Res., 113, 1–18, https://doi.org/10.1029/2008JD010039, 2008b.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|