Seasonal Variations in the Vertical Wavenumber Spectra of Stratospheric Gravity Waves in the Asian Monsoon Region Derived from COSMIC-2 Data

Author:

Qu Tao,Zhang Lifeng,Wang YuanORCID,Wang Xu,Guan Jiping

Abstract

We used the Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) dry temperature profile data from December 2019 to November 2021 to study the vertical wavenumber spectra of the potential energy of stratospheric gravity waves (GWs Ep) in the Asian monsoon region (15–45°N, 70–150°E). The GW Ep decreases with increasing vertical wavenumber, and the spectral slope varies with wavenumber. The spectral slope becomes smaller over a wavenumber range of 0.1–0.45 km−1, and larger from 0.45–1 km−1, with increasing wavenumber. The energy density distribution at middle and low latitudes shows seasonal variations. Over a wavenumber range of 0.05–0.5 km−1, the energy density in winter is higher at middle latitudes than at low latitudes, and the opposite is observed in summer over a wavenumber range from 0.1 to 1 km−1. Both the spectral amplitude and characteristic wavelength exhibit band-like patterns, and the large-value bands and their centers vary significantly with the season. In winter, the middle latitude spectral amplitude is larger than that at low latitudes, and the significant large-value band-like distribution is at ~40°N. In summer, the distribution is opposite, with large-value band regions over the Bay of Bengal and Indo-China Peninsula. The large-value region of the middle latitude spectral amplitude corresponds to a longer characteristic wavelength, while the large-value region of the low latitude spectral amplitude corresponds to a shorter characteristic wavelength. There is also significant seasonal variation in the distribution of spectral slopes. Over a wavenumber range of 0.1 to 0.5 km−1, the slope is smaller at middle latitudes and larger at low latitudes in winter; the opposite is observed in summer. There is a significant annual cycle of spectral amplitude at middle and low latitudes, and a 4.8 month cycle at middle latitudes.

Funder

National Natural Science Foundation of China

National Natural Science Foundation for Young Scientists of China

Science and Technology Innovation Program of Hunan Province

Research Project of National University of Defense Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3